Microtubule (MT)-based motor proteins, kinesins and dyneins, play important roles in multiple cellular processes including cell division. In this study, we describe the generation and use of an Escherichia coli RNase III-prepared human kinesin/dynein esiRNA library to systematically analyze the functions of all human kinesin/dynein MT motor proteins. Our results indicate that at least 12 kinesins are involved in mitosis and cytokinesis. Eg5 (a member of the kinesin-5 family), Kif2A (a member of the kinesin-13 family), and KifC1 (a member of the kinesin-14 family) are crucial for spindle formation; KifC1, MCAK (a member of the kinesin-13 family), CENP-E (a member of the kinesin-7 family), Kif14 (a member of the kinesin-3 family), Kif18 (a member of the kinesin-8 family), and Kid (a member of the kinesin-10 family) are required for chromosome congression and alignment; Kif4A and Kif4B (members of the kinesin-4 family) have roles in anaphase spindle dynamics; and Kif4A, Kif4B, MKLP1, and MKLP2 (members of the kinesin-6 family) are essential for cytokinesis. Using immunofluorescence analysis, time-lapse microscopy, and rescue experiments, we investigate the roles of these 12 kinesins in detail. INTRODUCTIONThe mitotic spindle, a unique cellular apparatus assembled at the beginning of mitosis, plays a pivotal role in regulating mitosis and cytokinesis. Although tubulins are the most abundant protein in the mitotic spindle, many additional proteins are involved in regulating its formation and function. Most prominent among these are members of the kinesin and dynein families of MT-based motor proteins (Mandelkow and Mandelkow, 2002;Vale, 2003), which generate directional movement along microtubules. The kinesin proteins share a conserved, ϳ340 amino acid, motor domain that utilizes ATP to fuel their movement along MTs. Outside the motor domain, kinesins also contain different "stalk" and "tail" domains that mediate oligomerization, regulation of motor activity, and interactions with their specific cargos (Vale, 2003).The roles of kinesins in mitosis and cytokinesis have been extensively studied in Saccharomyces cerevisiae, in which there are six kinesin genes belonging to five subfamilies. Gene disruption experiments have demonstrated that five of these kinesins play essential roles in regulating the formation, orientation, and elongation of the mitotic spindle and the segregation of chromosomes in mitosis (Hildebrandt and Hoyt, 2000). In addition, one cytoplasmic dynein motorcontaining polypeptide, the dynein heavy chain (DHC), has also been implicated in mitotic spindle function (Hildebrandt and Hoyt, 2000). Using RNAi techniques, Goshima and Vale recently examined the mitotic functions of cytoplasmic dynein and all 25 fly kinesins in cultured Drosophila cells (Goshima and Vale, 2003). They found that four kinesins are needed for bipolar spindle assembly and four are crucial for metaphase chromosome alignment. Dynein plays a role in the metaphase-to-anaphase transition, and one kinesin is required for cytokinesis.Th...
Systemic lupus erythematosus (SLE) is a multisystem, autoimmune disease that predominantly affects women. Previous findings that duplicated Toll-like receptor 7 (Tlr7) promotes lupus-like disease in male BXSB mice prompted us to evaluate TLR7 in human SLE. By using a candidate gene approach, we identified and replicated association of a TLR7 3′UTR SNP, rs3853839 (G/C), with SLE in 9,274 Eastern Asians (P combined = 6.5 × 10 −10 ), with a stronger effect in male than female subjects [odds ratio, male vs. female = 2.33 (95% CI = 1.64-3.30) vs. 1.24 (95% CI = 1.14-1.34); P = 4.1 × 10]. G-allele carriers had increased TLR7 transcripts and more pronounced IFN signature than C-allele carriers; heterozygotes had 2.7-fold higher transcripts of G-allele than C-allele. These data established a functional polymorphism in type I IFN pathway gene TLR7 predisposing to SLE, especially in Chinese and Japanese male subjects. functional polymorphism | disease susceptibility | autoimmunity | type I interferon S ystemic lupus erythematosus [SLE; Online Mendelian Inheritance in Man (OMIM) no. 152700] is a multisystem, autoimmune disease with strong genetic and environmental components (1). SLE predominantly affects women, with a female-to-male ratio of approximately 9:1. Male patients with SLE, although rare, tend to have more severe disease and poorer outcome (2), suggesting potential sex dimorphism in the disease development. Although the sex effect has often been attributed to sex hormones, the fact that XXY male subjects have approximately a 14-fold higher risk of developing SLE than 46 XY men indicates that X-linked genes may be risk factors for human SLE (3).Located at Xp22.2, Toll-like receptor 7 (TLR7; OMIM no. 300365) and its functionally related gene TLR8 (OMIM no. 300366) encode proteins that play critical roles in pathogen recognition and activation of innate immunity (4). They recognize endogenous RNA-containing autoantigens and induce the expression of type I IFN, a pivotal cytokine in the pathogenesis of SLE (5). In lupus-prone BXSB mice, the translocation of a segmental duplication of X chromosome to Y chromosome creates the Y-linked autoimmune accelerator (Yaa) locus, which was associated with autoreactive B cell responses to RNA-related antigens and exacerbation of glomerulonephritis in male mice (6). Although translocated X chromosome segment in Yaa may contain as many as 16 genes, the major gene for causation of the autoimmune phenotypes was identified to be TLR7 (7), making it a potential susceptibility gene for SLE. By using a candidate gene approach, we report herein that a functional polymorphism in 3′UTR of TLR7 is associated with SLE in Chinese and Japanese populations, with a stronger effect in male than female subjects. ResultsDiscovery and Replication of the Association of a TLR7 3′UTR SNP with SLE in Eastern Asian Population. We genotyped 27 SNPs from the TLR7-TLR8 region (12 in TLR7 and 15 in TLR8) in 1,434 SLE cases and 1,591 control subjects of Eastern Asian ancestry using the Beadstation Infinium II...
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P meta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P meta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P meta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (P meta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Garlic, an economically important vegetable, spice, and medicinal crop, produces highly enlarged bulbs and unique organosulfur compounds. Here, we report a chromosome-level genome assembly for garlic, with a total size of approximately 16.24 Gb, as well as the annotation of 57 561 predicted protein-coding genes, making garlic the first Allium species with a sequenced genome. Analysis of this garlic genome assembly reveals a recent burst of transposable elements, explaining the substantial expansion of the garlic genome. We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans, and provided new insights into the biosynthesis of these two compounds. Furthermore, a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs. The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a strong genetic component characterized by autoantibody production and a type I interferon signature1. Here we report a missense variant (g.74779296G>A; p.Arg90His) in NCF1, encoding the p47phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by the Immunochip in the GTF2IRD1-GTF2I region at 7q11.23 with a complex genomic structure. We show that the p.Arg90His substitution, which is reported to cause reduced reactive oxygen species (ROS) production2, predisposes to SLE (odds ratio (OR)=3.47 in Asians (Pmeta=3.1×10−104), OR=2.61 in European Americans, OR=2.02 in African Americans) and other autoimmune diseases, including primary Sjögren’s syndrome (OR=2.45 in Chinese, OR=2.35 in European Americans) and rheumatoid arthritis (OR=1.65 in Koreans). Additionally, decreased and increased copy numbers of NCF1 predispose to and protect against SLE, respectively. Our data highlight the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.