Antitumor-analgesic peptide (AGAP) is a novel recombinant polypeptide. The primary study showed that AGAP 1.0 mg/kg exhibited strong analgesic and antitumor effects. The tail vein administration of AGAP potently reduced pain behaviors in mice induced by intraplantar injection of formalin or intraperitoneal injection of acetic acid, without affecting basal pain perception. To further assess the mechanisms of AGAP, the effects of AGAP on sodium channels were assessed using the whole-cell patch clamp recordings in dorsal root ganglia (DRG) neurons. The results showed that AGAP (3–1000 nM) inhibited the sodium currents in small-diameter DRG neurons in a dose-dependent manner. 1000 nM AGAP could inhibit the current density-voltage relationship curve of sodium channels in a voltage-dependent manner and negatively shift the activation curves. 1000 nM AGAP could reduce the tetrodotoxin-resistant (TTX-R) sodium currents by 42.8% in small-diameter DRG neurons. Further analysis revealed that AGAP potently inhibited NaV1.8 currents by 59.4%, and negatively shifted the activation and inactivation kinetics. 1000 nM AGAP also reduced the NaV1.9 currents by 33.7%, but had no significant effect on activation and inactivation kinetics. Thus, our results demonstrated that submicromolar concentrations of AGAP inhibited TTX-R sodium channel in rat small-diameter DRG neurons. It is concluded that these new results may better explain, at least in part, the analgesic properties of this polypeptide.
Neuropathic pain is a global medical concern, characterized by spontaneous pain, heat hyperalgesia and mechanical allodynia. The condition has been associated with alterations in the voltage‑gated sodium channels, Nav1.8 and Nav1.9, in nociceptive neurons termed nociceptors. However, an explanation for the contribution of these channels to the phenotype observed in neuropathic pain remains to be elucidated. The changes induced by chronic constriction injury (CCI) to Nav1.8 and Nav1.9 mRNA and protein levels, as well as electrical currents in injured and contralateral non‑injured dorsal root ganglion (DRG) neurons are described in the present study. A marked downregulation was observed for each Nav isoform transcript and protein expressed in injured neurons with the exception of the Nav1.9 protein, which exhibited no change, while in contralateral non‑injured neurons, the levels of protein and mRNA remained unchanged. Nav isoform functional analysis was then performed in L(4‑6) DRG neurons 14 days after CCI. The Nav1.8 current density was markedly decreased in injured DRG neurons following CCI. The voltage‑dependent activation of the Nav1.8 channel in these neurons was shifted to depolarized potentials by 5.3 mV, while it was shifted to hyperpolarized potentials by 10 mV for inactivation. The electrophysiological function of Nav1.9 was not affected by CCI. The present study demonstrated that ectopic discharge following CCI, which was likely induced by a positive shift in the Nav1.8 current inactivation curve in injured neurons, enhanced the excitability of the neurons by facilitating tetrodotoxin‑resistant sodium channels into the fast inactivation state and did not occur as a result of a compensatory redistribution in the contralateral uninjured neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.