Cellular senescence, a stress-induced irreversible growth arrest often characterized by p16Ink4a expression and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time and have been speculated to play a role in aging. To explore the physiological relevance and consequences of naturally occurring senescent cells, we used a previously established transgene, INK-ATTAC, to induce apoptosis in p16Ink4a-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. Here we show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. Clearance of p16Ink4a-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels, and adipocytes, respectively. Thus, p16Ink4a-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in multiple organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.
The Polycomb-repressive complex 2 (PRC2) is important for maintenance of stem cell pluripotency and suppression of cell differentiation by promoting histone H3 lysine 27 trimethylation (H3K27me3) and transcriptional repression of differentiation genes. Here we show that the tumoursuppressor protein BRCA1 interacts with the Polycomb protein EZH2 in mouse embryonic stem (ES) and human breast cancer cells. The BRCA1-binding region in EZH2 overlaps with the noncoding RNA (ncRNA)-binding domain, and BRCA1 expression inhibits the binding of EZH2 to the HOTAIR ncRNA. Decreased expression of BRCA1 causes genome-wide EZH2 re-targeting and elevates H3K27me3 levels at PRC2 target loci in both mouse ES and human breast cancer cells. BRCA1 deficiency blocks ES cell differentiation and enhances breast cancer migration and invasion in an EZH2-dependent manner. These results reveal that BRCA1 is a key negative modulator of PRC2 and that loss of BRCA1 inhibits ES cell differentiation and enhances an aggressive breast cancer phenotype by affecting PRC2 function.
Overexpression of the histone acetyltransferase p300 is implicated in the proliferation and progression of prostate cancer (PCa), but evidence of a causal role is lacking. In this study, we provide genetic evidence that this generic transcriptional co-activator functions as a positive modifier of prostate tumorigenesis. In a mouse model of PTEN deletion-induced prostate cancer, genetic ablation of p300 attenuated expression of the androgen receptor (AR). This finding was confirmed in human PCa cells where PTEN expression was abolished by RNAi-mediated attenuation. These results were consistent with clinical evidence that the expression of p300 and AR correlate positively in human PCa specimens. Mechanistically, PTEN inactivation increased AR phosphorylation at serine 81 (Ser81) to promote p300 binding and acetylation of AR, thereby precluding its polyubiquitination and degradation. In support of these findings, in PTEN-deficient PCa in the mouse we found that p300 was crucial for AR target gene expression. Taken together, our work identifies p300 as a molecular determinant of AR degradation and highlight p300 as a candidate target to manage PCa, especially in cases marked by PTEN loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.