Background: Sepsis-induced myopathy (SIM) is a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study aimed to use bioinformatics analysis to identify hub genes and molecular pathways involved in SIM, to identify potential diagnostic or therapeutic biomarkers. Material/Methods: The Gene Expression Omnibus (GEO) database was used to acquire the GSE13205 expression profile. The differentially expressed genes (DEGs) in cases of SIM and healthy controls, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the limma R/Bioconductor software package and clusterProfiler package in R, respectively. The protein-protein interaction (PPI) network data of DEGs was retrieved using the STRING database and analyzed using the Molecular Complex Detection (MCODE) Cytoscape software plugin. Results: A total of 196 DEGs were obtained in SIM samples compared with healthy samples, including 93 upregulated genes. The DEGs were significantly upregulated in mineral absorption, and the interleukin-17 (IL-17) signaling pathway and 103 down-regulated genes were associated with control of the bile secretion signaling pathway. A protein-protein interaction (PPI) network was constructed with 106 nodes and 192 edges. The top two important clusters were selected from the PPI by MCODE analysis. There were 16 hub genes with a high degree of connectivity in the PPI network that were selected, including heme oxygenase 1 (HMOX1), nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1), and metallothionein (MT)-1E. Conclusions: Bioinformatics network analysis identified key hub genes and molecular mechanisms in SIM.
High blood pressure (hypertension) is implicated in the development of atherosclerosis. Blood vessels are constantly subjected to stretch due to blood pressure and changes in stretch usually instigate adaptive vascular remodeling, including abnormal growth and proliferation of vascular smooth muscle cells (VSMCs) as well as extracellular matrix (ECM). In this experiment, we used bovine aortic endothelial cells and smooth muscle cells (EC-SMC) co-cultured ePTFE vascular grafts subjected to normal atmospheric pressure (as a control), and 100 mmHg hydrostatic pressure for 7 d. The increase of cell layer thickness was observed. When measured, the cell layer thickness increased by 116.2%. The increase of collagen (Type IV) synthesis was also observed in the immunohistochemistry assay. When stained with toluidine blue, the cells showed metachromatic phenomenon.
Abstract. The present study aimed to explore the effects and possible mechanisms of recombinant human endothelin (ET)-1 on cyclooxygenase (COX)-2 expression in human hormone refractory prostate cancer PC3 cells. PC3 cells were treated with 100 nmol/l ET-1 for the indicated times (3, 6, 9, 12 and 24 h) and concentrations (0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.