The voltage sags' caused recognition is the basis for formulating governance plans and clarifying liabilities for accidents. The diversification of smart grid equipment, the grid-connected power generation of new energy sources and the regional differentiation of power consumption modes pose new challenges to the traditional methods. In this study, a method based on deep learning hybrid model is proposed. The convolutional neural network is used to flexibly receive the voltage after two-dimensional transformation, so as to automatically obtain the time series and spatial characteristics of the voltage sag signals. The deep belief network is used to replace the fully connected layers in convolutional neural network, thereby enhancing the multi-label classification ability of the model. The parameters obtained by the unsupervised training of the stacked sparse denoising auto-encoder are used to initialise the weight of deep belief network, thereby improving the convergence speed and the anti-noise performance of the model. Iterative training and repeated testing of the network using pre-processed simulation data and actual recorded data verify the high recognition accuracy and strong anti-noise performance of the hybrid model. Compared with the traditional methods, the hybrid model also has good generalisation ability and can be effectively applied in practical engineering.
Emotion recognition is of great significance to computational intelligence systems. In order to improve the accuracy of emotion recognition, electroencephalogram (EEG) signals and external physiological (EP) signals are adopted due to their perfect performance in reflecting the slight variations of emotions, wherein EEG signals consist of multiple channels signals and EP signals consist of multiple types of signals. In this paper, a multimodal emotion recognition method based on convolutional auto-encoder (CAE) is proposed. Firstly, a CAE is designed to obtain the fusion features of multichannel EEG signals and multitype EP signals. Secondly, a fully connected neural network classifier is constructed to achieve emotion recognition. Finally, experiment results show that the proposed method can improve the accuracy of emotion recognition obviously compared with other similar methods.
Monitoring surface quality during machining has considerable practical significance for the performance of high-value products, particularly for their assembly interfaces. Surface roughness is the most important metric of surface quality. Currently, the research on online surface roughness prediction has several limitations. The effect of tool wear variation on surface roughness is seldom considered in machining. In addition, the deterioration trend of surface roughness and tool wear differs under variable cutting parameters. The prediction models trained under one set of cutting parameters fail when cutting parameters change. Accordingly, to timely monitor the surface quality of assembly interfaces of high-value products, this paper proposes a surface roughness prediction method that considers the tool wear variation under variable cutting parameters. In this method, a stacked autoencoder and long short-term memory network (SAE–LSTM) is designed as the fundamental surface roughness prediction model using tool wear conditions and sensor signals as inputs. The transfer learning strategy is applied to the SAE–LSTM such that the surface roughness online prediction under variable cutting parameters can be realized. Machining experiments for the assembly interface (using Ti6Al4V as material) of an aircraft’s vertical tail are conducted, and monitoring data are used to validate the proposed method. Ablation studies are implemented to evaluate the key modules of the proposed model. The experimental results show that the proposed method outperforms other models and is capable of tracking the true surface roughness with time. Specifically, the minimum values of the root mean square error and mean absolute percentage error of the prediction results after transfer learning are 0.027 μm and 1.56%, respectively.
Deep learning methods have promoted the vibration-based machinery fault diagnostics from manual feature extraction to an end-to-end solution in the past few years and exhibited great success on various diagnostics tasks. However, this success is based on the assumptions that sufficient labeled data are available, and that the training and testing data are from the same distribution, which is normally difficult to satisfy in practice. To overcome this issue, we propose a multistage deep convolutional transfer learning method (MSDCTL) aimed at transferring vibration-based fault diagnostics capabilities to new working conditions, experimental protocols and instrumented devices while avoiding the requirement for new labeled fault data. MSDCTL is constructed as a one-dimensional convolutional neural network (CNN) with double-input structure that accepts raw data from different domains as input. The features from different domains are automatically learned and a customized layer is designed to compute the distribution discrepancy of the features. This discrepancy is further minimized such that the features learned from different domains are domain-invariant. A multistage training strategy including pre-train and fine-tuning is proposed to transfer the weight of a pre-trained model to new diagnostics tasks, which drastically reduces the requirement on the amount of data in the new task. The proposed model is validated on three bearing fault datasets from three institutes, including one from our own. We designed nine transfer tasks covering fault diagnostics transfer across diverse working conditions and devices to test the effectiveness and robustness of our model. The results show high diagnostics accuracies on all the designed transfer tasks with strong robustness. Especially for transfer to new devices the improvement over state of the art is very significant. INDEX TERMS Fault diagnostics, transfer learning, convolutional neural network, maximum mean difference, multistage training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.