We have developed a mathematical theory of the topological vertex-a theory that was originally proposed by M Aganagic, A Klemm, M Mariño and C Vafa on effectively computing Gromov-Witten invariants of smooth toric Calabi-Yau threefolds derived from duality between open string theory of smooth Calabi-Yau threefolds and ChernSimons theory on three-manifolds.14N35, 53D45; 57M27
Abstract. We prove a remarkable formula for Hodge integrals conjectured by Mariño and Vafa [23] based on large N duality, using functorial virtual localization on certain moduli spaces of relative stable morphisms.
Motivated by the Mariño-Vafa formula of Hodge integrals and physicists’ predictions on local Gromov-Witten invariants of toric Fano surfaces in a Calabi-Yau threefold, the third author conjectured a formula of certain Hodge integrals in terms of certain Chern-Simons invariants of the Hopf link. We prove this formula by virtual localization on moduli spaces of relative stable morphisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.