A major research plan entitled “Integrated research on the ecohydrological process of the Heihe River Basin” was launched by the National Natural Science Foundation of China in 2010. One of the key aims of this research plan is to establish a research platform that integrates observation, data management, and model simulation to foster twenty-first-century watershed science in China. Based on the diverse needs of interdisciplinary studies within this research plan, a program called the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) was implemented. The overall objective of HiWATER is to improve the observability of hydrological and ecological processes, to build a world-class watershed observing system, and to enhance the applicability of remote sensing in integrated ecohydrological studies and water resource management at the basin scale. This paper introduces the background, scientific objectives, and experimental design of HiWATER. The instrumental setting and airborne mission plans are also outlined. The highlights are the use of a flux observing matrix and an eco-hydrological wireless sensor network to capture multiscale heterogeneities and to address complex problems, such as heterogeneity, scaling, uncertainty, and closing water cycle at the watershed scale. HiWATER was formally initialized in May 2012 and will last four years until 2015. Data will be made available to the scientific community via the Environmental and Ecological Science Data Center for West China. International scientists are welcome to participate in the field campaign and use the data in their analyses.
Experiments were performed to examine the role of surface-active polysaccharides in the formation of transparent exopolymer particles (TEP) by bubble adsorption in seawater. Filtered (1 .O pm, 0.45 pm) and ultrafiltered (0.1 pm, 100 kDa, and 10 kDa) seawater samples were bubbled in a glass foam tower. The neutral sugar composition, concentration of TEP, and concentration of surface-active carbohydrates in generated foam samples were determined. Three different surface seawater samples (Monterey Bay, California; Shannon Point, Anacortes, Washington; and East Sound, Orcas Island, Washington) were used in the experiments. Significant concentrations of pre-existing and new TEP were extracted into foam by bubble adsorption. Newly generated TEP accounted for 28-52% of the TEP collected in the foam samples by bubbling l.O-pm-filtered samples. Neutral sugar composition analyses of foam samples derived as a function of bubbling time indicated that two types of surface-active carbohydrates were extracted by bubble adsorption: highly surface-active carbohydrates, which were extracted initially, and less surfaceactive carbohydrates. As in our previous mesocosm study (Mopper et al. 1995), highly surface-active polysaccharides were enriched in deoxysugars (fucose and rhamnose), whereas the less surface-active polysaccharides and residual (bubble-stripped) water were glucose rich. In addition, the highly surface-active fraction was strongly enriched in covalently bound sulfate. The concentrations of TEP and surface-active carbohydrates that were extracted into the foam both decreased sharply with decreasing filter size used to filter samples prior to bubbling, in agreement with theoretical considerations. The results of this study suggest that bubble adsorption of sulfate-rich surface-active carbohydrates is an important pathway for the formation of TEP in surface waters, especially during algal blooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.