Student performance prediction aims to leverage student-related information to predict their future academic outcomes, which may be beneficial to numerous educational applications, such as personalized teaching and academic early warning. In this paper, we seek to address the problem by analyzing students' daily studying and living behavior, which is comprehensively recorded via campus smart cards. Different from previous studies, we propose an end-to-end student performance prediction model, namely Tri-branch CNN, which is equipped with three types of convolutional filters, i.e., the row-wise convolution, column-wise convolution, and group-wise convolution, to effectively capture the duration, periodicity, and location-aware characteristic of student behavior, respectively. We also introduce the attention mechanism and cost-sensitive learning strategy to further improve the accuracy of our approach. Extensive experiments on a large-scale real-world dataset demonstrate the potential of our approach for student performance prediction. CCS CONCEPTS • Information systems → Data stream mining; • Computing methodologies → Neural networks.
Convolutional Neural Network (CNN) based multi-task learning methods have been widely used in a variety of applications of computer vision. Towards effective multi-task CNN architectures, recent studies automatically learn the optimal combinations of taskspecific features at single network layers. However, they generally construct an unchanged operation of feature aggregation after training, regardless of the characteristics of input features. In this paper, we propose a novel Adaptive Feature Aggregation (AFA) layer for multi-task CNNs, in which a dynamic aggregation mechanism is designed to allow each task to adaptively determine the degree to which the feature aggregation of different tasks is needed according to the feature dependencies. On both pixel-level and image-level tasks, we demonstrate that our approach significantly outperforms the previous state-of-the-art methods of multi-task CNNs. CCS CONCEPTS • Computing methodologies → Multi-task learning; Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.