Inspired by the coordinated multiple healing mechanism of the organism, a four‐armed benzaldehyde‐terminated polyethylene glycol and dodecyl‐modified chitosan hybrid hydrogel with vascular endothelial growth factor (VEGF) encapsulation are presented for efficient and versatile wound healing. The hybrid hydrogel is formed through the reversible Schiff base and possesses self‐healing capability. As the dodecyl tails can insert themselves into and be anchored onto the lipid bilayer of the cell membrane, the hybrid hydrogel has outstanding tissue adhesion, blood cell coagulation and hemostasis, anti‐infection, and cell recruitment functions. Moreover, by loading in and controllably releasing VEGF from the hybrid hydrogel, the processes of cell proliferation and tissue remodeling in the wound bed can be significantly improved. Based on an in vivo study of the multifunctional hybrid hydrogel, it is demonstrated that acute tissue injuries such as vessel bleeding and liver bleeding can be repaired immediately because of the outstanding adhesion and hemostasis features of the hydrogel. Moreover, the chronic wound‐healing process of an infectious full‐thickness skin defect model can also be significantly enhanced by promoting angiogenesis, collagen deposition, macrophage polarization, and granulation tissue formation. Thus, this multifunctional hybrid hydrogel is potentially valuable for clinical applications.
Physicians have long been calling for an inherent antimicrobial wound dressing, which will be a great progress for treating complicated infections. Here, we report a novel bioadhesive hydrogel with inherent antibacterial properties prepared by mixing modified hyaluronic acid (HA) and ε-polylysine (EPL). This hydrogel can effectively kill Gram (+) and (−) bacteria for its high positive charge density on the surface. The sol−gel transition occurs within seconds via horseradish peroxidase enzymatic crosslinking and Schiff base reaction, which also allows the hydrogel to recover completely from destruction quickly within 5 min. In an infected rat wound model, histological studies indicated that the hydrogels effectively killed bacteria on the surface of wounds and accelerated wound healing. Histological analysis indicated that the thickness of the newborn skin, the density of the newborn microvascular, granulation tissue, and the collagen of rats treated with hydrogel dressings were twice as high as those treated by commercial fibrin glue. These results indicate that the HA/EPL hydrogel has great potential as an antibacterial wound dressing for future clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.