The pollution of toxic and persistent heavy metals commonly exist in water environment; such multi-component pollutants pose a serious threat to human beings and other organisms. Herein, to make full use of the advantages of both layered double hydroxide (LDH) and rice husk ash (RHA), a novel Mg-Fe-LDH-RHA functional material was synthesized by assembling LDH on the biochar derived from RHA and used as an adsorbent for removal of heavy metal ions including Pb, Cu, Co, Ni, Zn, and Cd. The adsorption kinetics and isotherms of heavy metal ions in a mono-component system, the adsorption capacities in mixed multi-metal ion system, and the regeneration of the adsorbent were studied in detail. The results showed that the synthesized Mg-Fe-LDH-RHA might efficiently remove the above six heavy metals in water under optimized experimental conditions. Interestingly, the removal performance toward Pb(II) showed high static distribution coefficients (K) of ~ 10 mL/g and maximum capacity of ~ 682 mg/g. Besides, further characterizations of the adsorbent have been conducted, and the result suggested the formation of abundant functional groups including hydroxyl, carbonyl, and carboxyl groups. The removal mechanism of the metal ions might be related to ion-exchange, surface precipitation, complexation, and hydrogen binding during the interactions between the LDH-RHA material and pollutants. Such a facile and environmentally friendly approach, efficient removal performance suggests that the LDH-RHA material thus has potential for efficient removal of heavy metals in practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.