A linearized analog photonic link (APL) is proposed based on an integratable electro-optic dual-parallel polarization modulator (DPPolM), which consists of two polarization beam splitters and two polarization modulators (PolMs). Theoretical analysis shows that the APL is potentially free from the third-order nonlinear distortion if a polarization controller placed before the DPPolM is carefully adjusted. A proof-of-concept experiment is carried out. A reduction of the third-order intermodulation components as high as 40 dB and an improvement of the spurious-free dynamic range as large as 15.5 dB is achieved as compared with a single PolM-based link. The DPPolM-based APL is simple, compact, and power efficient since it requires only one laser, one modulator, and one photodetector.
A photonic approach to the simultaneous measurement of the frequency, pulse amplitude (PA), pulse width (PW), and time of arrival (TOA) of an unknown pulsed microwave signal is proposed and demonstrated. The measurement is performed based on optical carrier-suppressed modulation, complementary optical filtering, low-speed photodetection, and electrical signal processing. A proof-of-concept experiment is carried out. A frequency measurement range of 2-11 GHz with a measurement error for frequency, PA, PW, and TOA within ±0.1 GHz, ±0.05 V, ±1 ns, and ±0.16 ns is achieved.
A fiber-connected ultra-wideband (UWB) sensor network for high-resolution localization which consists of a central station and several sensor nodes is proposed and demonstrated. To make the central station easily identify the received UWB pulses from different sensor nodes, optical time-division multiplexing (OTDM), realized by inserting a certain length of optical fiber between every two sensor nodes, is implemented. Due to the OTDM technology, the UWB pulses received by different sensors are mapped into different time slots, so neither parameter estimation nor clock synchronization is required in the UWB sensor node. All complex signal processing is completed in the central station, which greatly improve the localization accuracy and simplify the system. A proof-of-concept experiment for two-dimensional localization is demonstrated. Spatial resolution as high as 3.9 cm is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.