Sluggish transport kinetics and rapid dendrite growth are considered the main obstacles that impair the performance of Zn metal batteries. This work has developed a unique strategy of dual‐interface engineering (DIE) to design the separator as efficient ions transport modulator. The dual function of spontaneous polarization effect and high zincophilicity of BaTiO3 (BTO) is revealed by combining the theoretical and experimental studies. Benefiting from the decoration of BTO on glass fiber and well filling of the surface interspace, the DIE‐modified separator can not only effectively capture and accelerate Zn2+ transport between the fiber–electrolyte interface, but also redistribute the ions transport into homogenization in the separator–anode interface. Therefore, the modified Zn anodes perform highly reversible Zn plating/stripping with ultrahigh cumulative capacity even up to 9500 mAh cm−2 at the high current density of 10 mA cm−2. Meanwhile, the modified Zn‐MnO2 battery can retain a specific capacity of 108 mAh g−1 after 1800 cycles at 1 A g−1. Furthermore, the capacity retention of the battery also can be improved from 37.5% up to 115% at 0.2 A g−1 after 100 cycles. Such a novel concept for separator engineering provides a new perspective to enable ultra‐stable Zn metal anodes and high‐performance Zn metal batteries.
The ripple effect induced by uncontrollable Zn deposition is considered as the Achilles heel for developing high-performance aqueous Zn-ion batteries. For this problem, this work reports a design concept of 3D artificial array interface engineering to achieve volume stress elimination, preferred orientation growth and dendrite-free stable Zn metal anode. The mechanism of MXene array interface on modulating the growth kinetics and deposition behavior of Zn atoms were firstly disclosed on the multi-scale level, including the in-situ optical microscopy and transient simulation at the mesoscopic scale, in-situ Raman spectroscopy and in-situ X-ray diffraction at the microscopic scale, as well as density functional theory calculation at the atomic scale. As indicated by the electrochemical performance tests, such engineered electrode exhibits the comprehensive enhancements not only in the resistance of corrosion and hydrogen evolution, but also the rate capability and cyclic stability. High-rate performance (20 mA cm−2) and durable cycle lifespan (1350 h at 0.5 mA cm−2, 1500 h at 1 mA cm−2 and 800 h at 5 mA cm−2) can be realized. Moreover, the improvement of rate capability (214.1 mAh g−1 obtained at 10 A g−1) and cyclic stability also can be demonstrated in the case of 3D MXene array@Zn/VO2 battery. Beyond the previous 2D closed interface engineering, this research offers a unique 3D open array interface engineering to stabilize Zn metal anode, the controllable Zn deposition mechanism revealed is also expected to deepen the fundamental of rechargeable batteries including but not limited to aqueous Zn metal batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.