Abstract. Data assimilation algorithms rely on a basic assumption of an unbiased observation error. However, the presence of inconsistent measurements with nontrivial biases or inseparable baselines is unavoidable in practice. Assimilation analysis might diverge from reality since the data assimilation itself cannot distinguish whether the differences between model simulations and observations are due to the biased observations or model deficiencies. Unfortunately, modeling of observation biases or baselines which show strong spatiotemporal variability is a challenging task. In this study, we report how data-driven machine learning can be used to perform observation bias correction for data assimilation through a real application, which is the dust emission inversion using PM10 observations. PM10 observations are considered unbiased; however, a bias correction is necessary if they are used as a proxy for dust during dust storms since they actually represent a sum of dust particles and non-dust aerosols. Two observation bias correction methods have been designed in order to use PM10 measurements as proxy for the dust storm loads under severe dust conditions. The first one is the conventional chemistry transport model (CTM) that simulates life cycles of non-dust aerosols. The other one is the machine-learning model that describes the relations between the regular PM10 and other air quality measurements. The latter is trained by learning using 2 years of historical samples. The machine-learning-based non-dust model is shown to be in better agreement with observations compared to the CTM. The dust emission inversion tests have been performed, through assimilating either the raw measurements or the bias-corrected dust observations using either the CTM or machine-learning model. The emission field, surface dust concentration, and forecast skill are evaluated. The worst case is when we directly assimilate the original observations. The forecasts driven by the a posteriori emission in this case even result in larger errors than the reference prediction. This shows the necessities of bias correction in data assimilation. The best results are obtained when using the machine-learning model for bias correction, with the existing measurements used more precisely and the resulting forecasts close to reality.
Abstract. As a major alkaline gas in the atmosphere, NH3 significantly impacts atmospheric chemistry, ecological environment, and biodiversity. Gridded NH3 emission inventories can significantly affect the accuracy of model concentrations and play a crucial role in the refinement of mitigation strategies. However, several uncertainties are still associated with existing NH3 emission inventories in China. Therefore, in this study, we focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops that are cultivated in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a gridded NH3 emission inventory for mainland China with a resolution of 5 min × 5 min in 2016. The results showed that the atmospheric NH3 emissions in mainland China amounted to 12.11 Tg, with livestock waste (44.8 %) and fertilizer application (38.6 %) being the two main NH3 emission sources in China. Obvious spatial variability in NH3 emissions was also identified, and high emissions were predominantly concentrated in North China. Further, NH3 emissions tended to be high in summer and low in winter, and the ratio for the July–January period was 3.08. Furthermore, maize and rice fertilization in summer was primarily responsible for the increase in NH3 emissions in China, and the evaluation of the spatial and temporal accuracy of the NH3 emission inventory established in this study using the WRF-Chem and ground-station- and satellite-based observations showed that it was more accurate than other inventories.
Aerosol optical depths (AODs) from the new Himawari-8 satellite instrument have been assimilated in a dust simulation model over East Asia. This advanced geostationary instrument is capable of monitoring the East Asian dust storms which usually have great spatial and temporal variability. The quality of the data has been verified through a comparison with AErosol RObotic NETwork AODs. This study focuses on extreme dust events only when dust aerosols are dominant; promising results are obtained in AOD assimilation experiments during a case in May 2017. The dust emission fields that drive the simulation model are strongly improved by the inverse modeling, and consequently, the simulated dust concentrations are in better agreements with the observed AOD as well as ground-based observations of PM 10 . However, some satellite AODs show significant inconsistence with the simulations and the PM 10 and AErosol RObotic NETwork observations, which might arise from retrieval errors over a partially clouded scene. The data assimilation procedure therefore includes a screening method to exclude these observations in order to avoid unrealistic results. A dust mask screening method is designed, which is based on selecting only those observations where the deterministic model produces a substantial amount of dust. This screen algorithm is tested to give more accurate result compared to the traditional method based on background covariance in the case study. Note that our screen method would exclude valuable information in case the model is not able to simulate the dust plume shape correctly; hence, applications in related studies require inspections of simulations and observations by user.
Abstract. Last spring, super dust storms reappeared in East Asia after being absent for one and a half decades. The event caused enormous losses in both Mongolia and China. Accurate simulation of such super sandstorms is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system, but also to reveal the climatic driving force and the process of desertification. However, accurate simulation of dust life cycles is challenging, mainly due to imperfect knowledge of emissions. In this study, the emissions that lead to the 2021 spring dust storms are estimated through assimilation of MODIS AOD and ground-based PM10 concentration data simultaneously. With this, the dust concentrations during these super storms could be reproduced and validated with concentration observations. The multi-observation assimilation is also compared against emission inversion that assimilates AOD or PM10 concentration measurements alone, and the added values are analyzed. The emission inversion results reveal that wind-blown dust emissions originated from both China and Mongolia during spring 2021. Specifically, 19.9×106 and 37.5×106 t of particles were released in the Chinese and Mongolian Gobi, respectively, during these severe dust events. By source apportionment it was revealed that the Mongolian Gobi poses more severe threats to the densely populated regions of the Fenwei Plain (FWP) and the North China Plain (NCP) located in northern China than does the Chinese Gobi. It was estimated that 63 % of the dust deposited in FWP was due to transnational transport from Mongolia. For NCP, the long-distance transport dust from Mongolia contributes about 69 % to the dust deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.