To explore the cooling effect of phase change materials (PCM) on asphalt pavement, a numerical model of the coupled heat transfer process of a typical monolithic subgrade of the G7 Expressway in the eastern Tianshan mountain area was developed. Three types of paraffin materials (OP55E, OP52E, OP47E) were mixed in a 4:3:3 volume ratio and blended into the asphalt upper layer and overall asphalt layer at volume ratios of 5%, 10%, 15% and 20%. The cooling effect of different PCM addition schemes was simulated and analyzed, and the frequency and duration of asphalt pavement high temperature operation status were also measured. The results showed that: (1) Th addition of PCM in the asphalt layer can effectively reduce the frequency of pavement high temperature rutting damage. The number of days and average daily duration of high temperature on the road surface were both reduced. (2) The cooling effect was positively correlated with the PCM volume mixing ratio, and the temperature drop of the pavement also increased with the increase of the PCM blending ratio. As the PCM mixing ratio increased from 5% to 20%, the initial 75 °C pavement cooled by 1.49 °C and 4.66 °C, respectively, and the number of days and hours of pavement temperature over 70 °C decreased to 4 days and 3.3 h, respectively. (3) The cooling effect of the asphalt upper layer PCM scheme was greater at a small mixing ratio (5%), whereas the performance of the overall asphalt layer PCM blended scheme was effectively promoted by increasing the equivalent heat capacity of system under the large mixing ratio (20%).
Understanding the evolution of mechanical properties and pore structure of semirigid base under large temperature difference is of great significance for evaluating the durability and safety of semirigid base structure and studying the damage cracking mechanism and prevention technology of semirigid base induced by large temperature difference climate. This paper studies the variation law of peak stress and dynamic modulus, the evolution characteristics of pore structure, and the pore size distribution of semirigid base after different cycles at different temperature intervals. Based on the analysis of peak stress and dynamic modulus test results, the degradation effect of freeze-thaw environment (−20°C∼20°C) on semirigid base is far greater than that of high-temperature environment (20°C∼60°C) and low-temperature environment (−5°C∼−30°C). There are significant decreases in peak stress and dynamic modulus of semirigid base in the late cycle (12 to 15 cycles). Under low-temperature and freeze-thaw environments, the axial load resistance of semirigid base is significantly correlated with the deformation resistance, and the correlation between the two is not significant under high-temperature environment. The variability of the thermal expansion and contraction characteristics of the internal microscopic phases of the semirigid base and the force characteristics of the pore interface phases are the root causes of the damage and cracking of the pavement base in a large temperature difference climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.