Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition characterized by somatic mutations in the blood of otherwise healthy adults. We hypothesized that in patients undergoing autologous stem-cell transplantation (ASCT) for lymphoma, CHIP at the time of ASCT would be associated with an increased risk of myelodysplastic syndrome and acute myeloid leukemia, collectively termed therapy-related myeloid neoplasm (TMN), and other adverse outcomes. MethodsWe performed whole-exome sequencing on pre-and post-ASCT samples from 12 patients who developed TMN after autologous transplantation for Hodgkin lymphoma or non-Hodgkin lymphoma and targeted sequencing on cryopreserved aliquots of autologous stem-cell products from 401 patients who underwent ASCT for non-Hodgkin lymphoma between 2003 and 2010. We assessed the effect of CHIP at the time of ASCT on subsequent outcomes, including TMN, cause-specific mortality, and overall survival. ResultsFor six of 12 patients in the exome sequencing cohort, mutations found in the TMN specimen were also detectable in the pre-ASCT specimen. In the targeted sequencing cohort, 120 patients (29.9%) had CHIP at the time of ASCT, which was associated with an increased rate of TMN (10-year cumulative incidence, 14.1% v 4.3% for those with and without CHIP, respectively; P = .002). Patients with CHIP had significantly inferior overall survival compared with those without CHIP (10-year overall survival, 30.4% v 60.9%, respectively; P , .001), including increased risk of death from TMN and cardiovascular disease. ConclusionIn patients undergoing ASCT for lymphoma, CHIP at the time of transplantation is associated with inferior survival and increased risk of TMN.
BackgroundAngiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing.ResultsWe sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution.ConclusionsWe have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation.
In most myeloma patients, even after several rounds of intensive therapy, drug resistant tumor cells survive and proliferate aggressively leading to relapse. In the present study, gene expression profiling of tumor cells isolated from myeloma patients after sequential rounds of chemotherapy, revealed for the first time that heparanase, a potent promoter of myeloma growth and progression, was elevated in myeloma cells that survived therapy. Based on this clinical data, we hypothesized that heparanase was involved in myeloma resistance to drug therapy. In several survival and viability assays, elevated heparanase expression promoted resistance of myeloma tumor cells to chemotherapy. Mechanistically, this enhanced survival was due to heparanase-mediated ERK signaling. Importantly, use of the heparanase inhibitor Roneparstat in combination with chemotherapy clearly diminished the growth of disseminated myeloma tumors in vivo. Moreover, use of Roneparstat either during or after chemotherapy diminished regrowth of myeloma tumors in vivo following therapy. These results provide compelling evidence that heparanase is a promising, novel target for overcoming myeloma resistance to therapy and that targeting heparanase has the potential to prevent relapse in myeloma and possibly other cancers.
Chronic myeloid leukemia (CML) originates in a hematopoietic stem cell (HSC) transformed by the breakpoint cluster region (BCR)-abelson (ABL) oncogene and is effectively treated with tyrosine kinase inhibitors (TKIs). TKIs do not eliminate disease-propagating leukemic stem cells (LSCs), suggesting a deeper understanding of niche-dependent regulation of CML LSCs is required to eradicate disease. Cxcl12 is expressed in bone marrow niches and controls HSC maintenance, and here, we show that targeted deletion of Cxcl12 from mesenchymal stromal cells (MSCs) reduces normal HSC numbers but promotes LSC expansion by increasing self-renewing cell divisions, possibly through enhanced Ezh2 activity. In contrast, endothelial cell-specific Cxcl12 deletion decreases LSC proliferation, suggesting niche-specific effects. During CML development, abnormal clusters of colocalized MSCs and LSCs form but disappear upon Cxcl12 deletion. Moreover, MSC-specific deletion of Cxcl12 increases LSC elimination by TKI treatment. These findings highlight a critical role of niche-specific effects of Cxcl12 expression in maintaining quiescence of TKI-resistant LSC populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.