The parasitic helminthTrichinella spiralis, which poses a serious health risk to animals and humans, can be found worldwide. Recent findings indicate that a rare type of gut epithelial cell, tuft cells, can detect the helminth, triggering type 2 immune responses. However, the underlying molecular mechanisms remain to be fully understood. Here we show that both excretory–secretory products (E–S) and extract ofT. spiraliscan stimulate the release of the cytokine interleukin 25 (IL-25) from the mouse small intestinal villi and evoke calcium responses from tuft cells in the intestinal organoids, which can be blocked by a bitter-taste receptor inhibitor, allyl isothiocyanate. Heterologously expressed mouse Tas2r bitter-taste receptors, the expression of which is augmented during tuft-cell hyperplasia, can respond to the E–S and extract as well as to the bitter compound salicin whereas salicin in turn can induce IL-25 release from tuft cells. Furthermore, abolishment of the G-protein γ13 subunit, application of the inhibitors for G-protein αo/i, Gβγ subunits, and phospholipase Cβ2 dramatically reduces the IL-25 release. Finally, tuft cells are found to utilize the inositol triphosphate receptor type 2 (Ip3r2) to regulate cytosolic calcium and thus Trpm5 activity, while potentiation of Trpm5 by a sweet-tasting compound, stevioside, enhances tuft cell IL-25 release and hyperplasia in vivo. Taken together,T. spiralisinfection activates a signaling pathway in intestinal tuft cells similar to that of taste-bud cells, but with some key differences, to initiate type 2 immunity.
Background Hand injury is commonly associated with multiple soft tissue defects. Polyfoliate flaps grafting is the optimal approach for multiple wounds.The feasibility of clinical using of free thoracodorsal artery polyfoliate perforator flaps for repairing multiple soft tissue defects in the hand needs to be confirmed in clinical practice. Methods Fifteen patients with hand soft tissue defects that were repaired using free thoracodorsal artery polyfoliate perforator flaps from January 2015 to February 2018 was retrospectively analysed. The survival rate, the operative time, the appearance and sensory recovery of the flaps, and hand function were evaluated. Results The flaps of all 15 patients survived. Vascular crisis occurred in one patient, and the flap was saved after exploratory operation. The 15 patients were followed up for 12–26 months. Sensation in the flaps was partially recovered in all 15 patients. The wound in the donor area was closed directly with sutures. Mean score of scars at the donor site were assessed using the modified Vancouver scar scale (VSS) was 2.7. A puffed appearance in the recipient area was noted in four patients. To obtain a more satisfactory appearance, revision of the flap was performed once in these four patients. The Total Active Movement (TAM) evaluation system was used to assess the results, which were considered excellent in seven patients, good in six patients, fair in two patients, and poor in none of the patients. Ten of the 15 patients returned to their primary jobs. Conclusion Free thoracodorsal artery polyfoliate perforator flaps are appropriate for repairing multiple soft tissue defects in the hand, offer a satisfactory appearance, require a short operative time, and have little impact on the function and aesthetics of the donor site.
Inflammatory bowel disease (IBD) is one of the immune-related gastrointestinal disorders, including ulcerative colitis and Crohn's disease, that affects the life quality of millions of people worldwide. IBD symptoms include abdominal pain, diarrhea, and rectal bleeding, which may result from the interactions among gut microbiota, food components, intestinal epithelial cells, and immune cells. It is of particular importance to assess how each key gene expressed in intestinal epithelial and immune cells affects inflammation in the colon. G protein-coupled taste receptors, including G protein subunit α-gustducin and other signaling proteins, have been found in the intestines. Here, we use α-gustducin as a representative and describe a dextran sulfate sodium (DSS)-induced IBD model to evaluate the effect of gustatory gene mutations on gut mucosal immunity and inflammation. This method combines gene knockout technology with the chemically induced IBD model, and thus can be applied to assess the outcome of gustatory gene nullification as well as other genes that may exuberate or dampen the DSS-induced immune response in the colon. Mutant mice are administered with DSS for a certain period during which their body weight, stool, and rectal bleeding are monitored and recorded. At different timepoints during administration, some mice are euthanized, then the sizes and weights of their spleens and colons are measured and gut tissues are collected and processed for histological and gene expression analyses. The data show that the α-gustducin knockout results in excessive weight loss, diarrhea, intestinal bleeding, tissue damage, and inflammation vs. wild-type mice. Since the severity of induced inflammation is affected by mouse strains, housing environment, and diet, optimization of DSS concentration and administration duration in a pilot experiment is particularly important. By adjusting these factors, this method can be applied to assess both anti-and proinflammatory effects.
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter that is found in mammalian taste buds and can regulate the output of intragemmal signaling networks onto afferent nerve fibers. However, it is unclear how 5-HT is produced, synthesized locally inside taste buds or absorbed from outside sources. In this study, we attempt to address this question by delineating the process of possible 5-HT biosynthesis within taste buds. First, we verified that the rate-limiting enzyme tryptophan hydroxylase (TPH2) responsible for converting L-tryptophan into the intermediate 5-hydroxy-L-tryptophan (5-HTP) is expressed in a subset of type II taste bud cells (TBCs) whereas the enzyme aromatic L-aromatic amino acid decarboxylase (AADC) capable of converting 5-HTP into 5-HT is found in type III TBCs. And abolishment of TPH2 did not affect the production of intragemmal 5-HT or alter TBCs; the mutant mice did not show any changes in behavioral responses to all five primary taste qualities: sweet, umami, bitter, salty, and sour. Then we identified that 5-HTP as well as AADC are abundant in type III TBCs; and application of an AADC inhibitor significantly blocked the production of 5-HT in taste buds. In contrast, administration of an inhibitor on serotonin-reuptake transporters had minimal impact on the 5-HT amount in taste buds, indicating that exogenous 5-HT is not a major source for the intragemmal transmitter. Taken together, our data indicate that intragemmal serotonin is not biosynthesized de novo from tryptophan; instead, it is produced by AADC-mediated conversion of 5-HTP absorbed from the plasma and/or nerve fibers into 5-HT. Thus, our results suggest that the overall bodily 5-HTP level in the plasma and nervous system can regulate taste buds’ physiological function, and provide an important molecular mechanism connecting these peripheral taste organs with the circulatory and nervous systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.