Topological lasers are immune to imperfections and disorder. They have been recently demonstrated based on many kinds of robust edge states, which are mostly at the microscale. The realization of 2D on-chip topological nanolasers with a small footprint, a low threshold and high energy efficiency has yet to be explored. Here, we report the first experimental demonstration of a topological nanolaser with high performance in a 2D photonic crystal slab. A topological nanocavity is formed utilizing the Wannier-type 0D corner state. Lasing behaviour with a low threshold of approximately 1 µW and a high spontaneous emission coupling factor of 0.25 is observed with quantum dots as the active material. Such performance is much better than that of topological edge lasers and comparable to that of conventional photonic crystal nanolasers. Our experimental demonstration of a low-threshold topological nanolaser will be of great significance to the development of topological nanophotonic circuitry for the manipulation of photons in classical and quantum regimes.
Topological photonics provides a new paradigm in studying cavity quantum electrodynamics with robustness to disorder. In this work, the coupling between single quantum dots and the second‐order topological corner state are demonstrated. Based on the second‐order topological corner state, a topological photonic crystal cavity is designed and fabricated into GaAs slabs with quantum dots embedded. The coexistence of corner state and edge state with high quality factor close to 2000 is observed. The enhancement of photoluminescence intensity and emission rate are both observed when the quantum dot is on resonance with the corner state. This result enables the application of topology into cavity quantum electrodynamics, offering an approach to topological devices for quantum information processing.
Monolayer transition metal dichalcogenides have recently attracted great interests because the quantum dots embedded in monolayer can serve as optically active single photon emitters. Here, we provide an interpretation of the recombination mechanisms of these quantum emitters through polarization-resolved and magneto-optical spectroscopy at low temperature. Three types of defect-related quantum emitters in monolayer tungsten diselenide (WSe 2 ) are observed, with different exciton g factors of 2.02, 9.36 and unobservable Zeeman shift, respectively. The various magnetic response of the spatially localized excitons strongly indicate that the radiative recombination stems from the different transitions between defect-induced energy levels, valance and conduction bands. Furthermore, the different g factors and zerofield splittings of the three types of emitters strongly show that quantum dots embedded in monolayer have various types of confining potentials for localized excitons, resulting in electron-hole exchange interaction with a range of values in the presence of anisotropy. Our work further sheds light on the recombination mechanisms of defect-related quantum emitters and paves a way toward understanding the role of defects in single photon emitters in atomically thin semiconductors. * xlxu@iphy.ac.cn arXiv:2002.03526v1 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.