Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.
Here we show that it is possible to modulate the supramolecular assembly of designed H-bonding amphiphilic perylene-based materials through simple solvent interactions. These modulated supramolecular interactions have been translated to and observed in macroscopic properties, and provide new pathways to the preparation of switchable interfaces based on designed supramolecular interactions.
A new symmetrical sugar‐based perylenediimide derivative PTCDI‐BAG is synthesized and its aggregate morphologies and formation mechanisms are studied in detail in the mixed solvent system water/N,N‐dimethylformamide (H2O/DMF) with changing volume ratios. PTCDI‐BAG molecules self‐assemble into planar ribbons in 20/80 and 40/60 H2O/DMF (v/v), but their chiralities are opposite according to recorded circular dichroism (CD) spectra. With a further increase of the water content, only left‐handed helical nanowires are obtained in 60/40 and 80/20 H2O/DMF (v/v) mixtures. By combining density functional theory (DFT) calculations with the experimental investigations, it is proposed that kinetic and thermodynamic factors play key roles in tuning PTCDI‐BAG structures and helicity. The formation of the ribbon is thermodynamically controlled in the 20/80 H2O/DMF system, but kinetically controlled nucleation followed by thermodynamically controlled self‐assembly plays the governing roles for the formation of nanoribbons in 40/60 H2O/DMF. Devices based on single nanoribbons for hydrazine sensing exhibit better performance than nanofiber bundles obtained in this study and achiral nanostructures reported in previous study. This study not only provides an elaborated route to tuning the structures and helicity of PTCDI molecules, but also provides new possibilities for the construction of high‐performance nanodevices.
High‐voltage Li‐metal batteries (LMBs) are regarded as next‐generation high‐energy‐density storage devices to apply to extensive fields such as electric vehicles, space explorations, subsea operations, and grid‐scale storages. Unfortunately, their practical applications are restricted by some defects of commercial carbonate electrolytes including flammability, low oxidation stability, narrow temperature operation window, and Li dendrites growth. Herein, a novel ultralow‐concentration electrolyte (ULCE, 0.1 m) is fabricated by dissolving lithium difluoro(oxalato)borate in N‐methyl‐N‐methoxyethyl‐pyrrolidinium bis(trifluoromethylsulfonyl)imide ([MEMP][TFSI]) ionic liquid and 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropylether. This advanced ULCE exhibits impressive merits including low cost, non‐flammability, wide operation temperature (−100 to +70 °C), and high electrochemical window (5.75 V). Meanwhile, it helps to suppress Li dendrite growth due to the combined effect of the cation shielding by MEMP+ cations and robust solid electrolyte interphase formed by the preferential decomposition of DFOB− and TFSI− anions. The LiNi0.6Co0.2Mn0.2O2 (NCM622)/Li cell with ULCE shows outstanding performance under a high voltage of 4.5 V and a wide temperature range from −60 to 70 °C. This work provides a distinctive sight to design advanced electrolyte for lower cost, safe, and wide‐temperature high‐energy‐density LMBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.