Due to the capability of fast deployment and controllable mobility, unmanned aerial vehicles (UAVs) play an important role in mobile crowdsensing (MCS). However, constrained by limited battery capacity, UAVs cannot serve a wide area. In response to this problem, the ground vehicle is introduced and used to transport, release, and recycle UAVs. However, existing works only consider a special scenario: one ground vehicle with multiple UAVs. In this paper, we consider a more general scenario: multiple ground vehicles with multiple UAVs. We formalize the multi-vehicle-assisted multi-UAV path planning problem, which is a joint route planning and task assignment problem (RPTSP). To solve RPTSP, an efficient multi-vehicle-assisted multi-UAV path planning algorithm (MVP) is proposed. In MVP, we first allocate the detecting points to proper parking spots and then propose an efficient heuristic allocation algorithm EHA to plan the paths of ground vehicles. Besides, a genetic algorithm and reinforcement learning are utilized to plan the paths of UAVs. MVP maximizes the profits of an MCS carrier with a response time constraint and minimizes the number of employed vehicles. Finally, performance evaluation demonstrates that MVP outperforms the baseline algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.