Semi-Supervised Relation Extraction aims at learning well-performed RE models with limited labeled and large-scale unlabeled data. Existing methods mainly suffer from semantic drift and insufficient supervision, which severely limit the performance. To address these problems, recent work tends to design dual modules to work cooperatively for mutual enhancement. However, the consensus of two modules greatly restricts the model from exploring diverse relation expressions in unlabeled set, which hinders the performance as well as model generalization. To tackle this problem, in this paper, we propose a novel competition-based method AdvSRE. We set up a challenging minimax game on unlabeled data between two modules, Generator and Discriminator, and assign them with conflicting objectives. During the competition game, one module may find any possible chance to beat the other, which develops two modules' abilities until relation expressions cannot be further explored. To exploit label information, Discriminator is further asked to predict specific relation for each sentence. Experiment results on two benchmarks show new state-of-the-art performance over baselines, demonstrating the effectiveness of proposed AdvSRE.
Recently, an exciting experimental conclusion in Li et al. (Knowl Inf Syst 62(2):611–637, 1 ) about measures of uncertainty for knowledge bases has attracted great research interest for many scholars. However, these efforts lack solid theoretical interpretations for the experimental conclusion. The main limitation of their research is that the final experimental conclusions are only derived from experiments on three datasets, which makes it still unknown whether the conclusion is universal. In our work, we first review the mathematical theories, definitions, and tools for measuring the uncertainty of knowledge bases. Then, we provide a series of rigorous theoretical proofs to reveal the reasons for the superiority of using the knowledge amount of knowledge structure to measure the uncertainty of the knowledge bases. Combining with experiment results, we verify that knowledge amount has much better performance for measuring uncertainty of knowledge bases. Hence, we prove an empirical conclusion established through experiments from a mathematical point of view. In addition, we find that for some knowledge bases that cannot be classified by entity attributes, such as ProBase (a probabilistic taxonomy), our conclusion is still applicable. Therefore, our conclusions have a certain degree of universality and interpretability and provide a theoretical basis for measuring the uncertainty of many different types of knowledge bases, and the findings of this study have a number of important implications for future practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.