Memristor-enabled in-memory computing provides an unconventional computing paradigm to surpass the energy efficiency of von Neumann computers. Owing to the limitation of the computing mechanism, while the crossbar structure is desirable for dense computation, the system’s energy and area efficiency degrade substantially in performing sparse computation tasks, such as scientific computing. In this work, we report a high-efficiency in-memory sparse computing system based on a self-rectifying memristor array. This system originates from an analog computing mechanism that is motivated by the device’s self-rectifying nature, which can achieve an overall performance of ~97 to ~11 TOPS/W for 2- to 8-bit sparse computation when processing practical scientific computing tasks. Compared to previous in-memory computing system, this work provides over 85 times improvement in energy efficiency with an approximately 340 times reduction in hardware overhead. This work can pave the road toward a highly efficient in-memory computing platform for high-performance computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.