Nanog and Oct4 are essential transcription factors that regulate self-renewal and pluripotency of ES cells. However, the mechanisms by which Nanog and Oct4 modulate ES cell fate remain unknown. Through characterization of endogenous Nanog and Oct4 protein complexes in mouse ES cells, we found that these transcription factors interact with each other and associate with proteins from multiple repression complexes, including the NuRD, Sin3A and Pml complexes. In addition, Nanog, Oct4 and repressor proteins co-occupy Nanog-target genes in mouse ES cells, suggesting that Nanog and Oct4 together may communicate with distinct repression complexes to control gene transcription. To our surprise, of the various core components in the NuRD complex with which Nanog and Oct4 interact, Mta1 was preferred, whereas Mbd3 and Rbbp7 were either absent or present at sub-stoichiometric levels. We named this unique Hdac1/2- and Mta1/2-containing complex NODE (for Nanog and Oct4 associated deacetylase). Interestingly, NODE contained histone deacetylase (HDAC) activity that seemed to be comparable to NuRD, and retained its association with Nanog and Oct4 in Mbd3(-/-) ES cells. In contrast to Mbd3 loss-of-function, knockdown of NODE subunits led to increased expression of developmentally regulated genes and ES-cell differentiation. Our data collectively suggest that Nanog and Oct4 associate with unique repressor complexes on their target genes to control ES cell fate.
Detection of low-affinity or transient interactions can be a bottleneck in our understanding of signaling networks. To address this problem, we developed an arrayed screening strategy based on protein complementation to systematically investigate protein-protein interactions in live human cells, and performed a large-scale screen for regulators of telomeres. Maintenance of vertebrate telomeres requires the concerted action of members of the Telomere Interactome, built upon the six core telomeric proteins TRF1, TRF2, RAP1, TIN2, TPP1, and POT1. Of the ϳ12,000 human proteins examined, we identified over 300 proteins that associated with the six core telomeric pro- During mammalian DNA replication, linear chromosomal ends will gradually erode because of the inability of the DNA replication machinery to replicate the extreme 5Ј terminus of a linear DNA sequence (1, 2). This inherent "end replication problem" is circumvented through specialized chromosomal end structures (telomeres) and the action of the RNA-containing DNA polymerase -telomerase (3-9). Telomere homeostasis is essential for genome stability, cell survival, and growth.Telomeres and telomerase help to ensure genome integrity in eukaryotes by enabling complete replication of the ends of linear DNA molecules, and preventing chromosomal rearrangements or fusion. For dividing cells such as stem cells and the majority of cancer cells, the telomerase is an essential positive regulator of their telomere length and ultimately determines the proliferative potential of these cells.Mammalian telomeres consist of a series of (TTAGGG)n sequence repeats and terminate in 3Ј single-stranded DNA overhangs that are extendable by the telomerase (10). Exposed linear chromosome ends or naturally occurring doublestranded breaks pose additional risks including activation of DNA damage responses. The ends of telomeres in mammalian cells appear to fold back in a T-loop structure, with the 3Ј G-rich single-stranded overhang invading into the doublestranded telomere regions to form the D-loop (11). The structure of the telomeres, coupled with the coordinated action of a collection of proteins that protect the ends of chromosomes (12-15), contributes to the maintenance of telomere integrity, genome stability, and proper cell cycle progression.In mammals, the most widely studied telomere-associated proteins include the double-stranded DNA binding proteins TRF1 and TRF2 (16,17), the single-stranded telomeric DNA binding protein POT1 (18), and three associated factors (RAP1, TIN2, and TPP1) (19 -23). Work from our lab and others suggest that TPP1, along with POT1, TIN2, TRF1, TRF2, and RAP1, form a higher order complex (the telosome/ shelterin) at the telomeres (24 -27). Information regarding the state of the telomere ends can be transmitted from TRF1 and TRF2 to POT1, through TPP1 and the other subunits (28). Furthermore, TRF1 and TRF2 function as bona fide protein hubs and interact with a diverse array of factors/complexes that are involved in cell cycle, DNA repair, and recombinat...
Autoinflammatory diseases are caused by pathologic activation of the innate immune system. Primary hemophagocytic lymphohistiocytosis (HLH) is an aggressive syndrome of excessive immune activation caused by monogenic mutations resulting in cytotoxic cell defects and subsequent failure to eliminate activated macrophages. Secondary HLH is often diagnosed in cases without a known Mendelian inheritance. However, some cases of "secondary" HLH have been shown to harbor mutations with partial dysfunction of the cytotoxic system. Recently, macrophage intrinsic abnormalities caused by NLRC4 inflammasome mutations have been linked to autoinflammation and recurrent macrophage activation syndromes resembling a primary HLH. We report a case of a former 28-week preterm infant with congenital anemia, ascites, and a heavy edematous placenta with fetal thrombotic vasculopathy, who developed hepatosplenomegaly and unexplained systemic inflammation with laboratory features of HLH in the early postnatal course and died at 2 months of age. Postmortem examination confirmed the hepatosplenomegaly with marked sinusoidal hemophagocytosis, along with striking hemophagocytosis in the bone marrow and lymph nodes. There was extensive acute and chronic ischemic bowel disease with matted bowel loops, fibrous adhesions, and patchy necrotizing enterocolitis features. Whole exome sequencing analysis demonstrated a novel mosaic heterozygous NLRC4 512 C> T (p.Ser171Phe) de novo mutation predicated to cause a dominant, gain-of-function mutation resulting in a constitutively active protein. The assembly of NLRC4-containing inflammasomes via an induced self-propagation mechanism likely enables a perpetuating process of systemic macrophage activation, presumed to be initiated in utero in this patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.