Classical major histocompatibility complex (MHC) class I, first identified in the immune system, is also expressed in the developing and adult central nervous system (CNS). Although the MHC class I molecules have been found to be expressed in the CNS of different species, a necessary step to elucidate the temporal and spatial expression patterns of MHC class I molecules in the brain development has never been taken. Frozen sections were made from the brains of embryonic and postnatal C57BL/6 J mice, and the expression of H-2D(b) mRNA was examined by in situ hybridization. Immunofluorescence was also performed to define the cell types that express H2-D(b) in P15 mice. At E10.5, the earliest stage we examined, H2-D(b) was expressed in neuroepithelium of the brain vesicles. From E12.5 to P0, H2-D(b) expression was mainly located at cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum. From P4 to adult, H2-D(b) mRNA was detected at olfactory bulb, hippocampus, cerebellum and some nerve nuclei. The major cell types expressing H-2D(b) in P15 hippocampus, cerebral cortex and olfactory bulb were neuron. H2-K(b) signal paralleled that of H2-D(b) and the expression levels of the two molecules were comparable throughout the brain. The investigation of the expression pattern of H-2D(b) at both embryonic and postnatal stages is important for further understanding the physiological and pathological roles of H2-D(b) in the developing CNS.
It has been considered that healthy neurons in central nervous system (CNS) do not express major histocompatibility complex (MHC) class I molecules. However, recent studies clearly demonstrated the expression of functional MHC class I in the mammalian embryonic, neonatal and adult brain. Until now, it is still unknown whether MHC I molecules are expressed in the development of human brain. We collected nine human brain tissues from fetuses aged from 21 to 31 gestational weeks (GW), one newborn of postnatal 55 days and one adult. The expression of MHC class I molecules was detected during the development of visual system in human brain by immunohistochemistry and immunofluorescence. MHC class I proteins were located at lateral geniculate nucleus (LGN) and the expression was gradually increased from 21 GW to 31 GW and reached high levels at 30-31 GW when fine-scale refinement phase was mediated by neural electric activity. However, there was no expression of MHC class I molecules in the visual cortical cortex during all the developmental stages examined. We also concluded that MHC class I molecules were mainly expressed in neurons but not in astrocytes at LGN. In the developing visual system, the expression of β2M protein on neurons was not found in our study.
Recent animal studies have found neuronal expression of major histocompatibility complex (MHC) class I in the central nervous system (CNS). However, the developmental expression profiles of MHC class I in human CNS remain unclear. Here, we systemically evaluate the expression and subcellular localization of MHC class I molecules during human CNS development using immunohistochemistry and immunofluorescence. Between the age of 20-33 gestational weeks (GW), MHC class I expression was relatively absent in the cerebral cortex with the exception of a few neurons; however, expression increased rapidly in the cochlear nuclei and in the cerebellar cortical Purkinje cells while increasing slowly in the substantia nigra. Expression was also detected in some nuclei and nerve fibers of the brain stem including the ambiguus nucleus, the locus coeruleus and the solitary tract as early as 20 GW and persisted through 33 GW. These early-stage neural cells with MHC class I protein expression later developed neuronal morphology. 30-33 GW is an important period of MHC class I expression in neurons, and during this period, MHC class I molecules were found to be enriched not only in neuronal cell bodies and neurites but also in nerve fibers and in the surrounding stroma. No expression was detected in the adult brain with exception of the cerebrovascular endothelium. MHC class I molecules displayed greater postsynaptic colocalization in cerebellar Purkinje cells, in the lateral geniculate nucleus and in the cochlear nuclei. These results demonstrate diverse spatiotemporal expression patterns for MHC class I molecules in the prenatal human CNS and strongly support the notion that MHC class I molecules play important roles in both CNS development and plasticity.
MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.