Deep brain stimulation (DBS) has shown a remarkably high effectiveness for Parkinson's disease (PD). In many PD patients during DBS surgery, the therapeutic effects of the stimulation test are estimated by assessing changes in bradykinesia as the stimulation voltage is increased. In this study, we evaluated the potential of the leap motion controller (LMC) to quantify the motor component of bradykinesia in PD during DBS surgery, as this could make the intraoperative assessment of bradykinesia more accurate. Seven participants with idiopathic PD receiving chronic bilateral subthalamic nucleus deep brain stimulation (DBS) therapy were recruited. The motor tasks of finger tapping (FT), hand opening and closing (OC), and hand pronation and supination (PS) were selected pre- and intraoperatively in accordance with the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale. During the test, participants performed these tasks in sequence while being simultaneously monitored by the LMC and two professional clinicians. Key kinematic parameters differed between the preoperative and intraoperative conditions. We suggest that the average velocity (
V
¯
) and average amplitude (
A
¯
) of PS isolate the bradykinetic feature from that movement to provide a measure of the intraoperative state of the motor system. The LMC achieved promising results in evaluating PD patients’ hand and finger bradykinesia during DBS surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.