Type I insulin-like growth factor receptor (IGF-IR), which is frequently overexpressed in a variety of human cancers including lung cancer, mediates cancer cell proliferation and tumor growth. In this study, we used a human U6 promoter-driven DNA-template approach to induce hairpin RNA (hpRNA)-triggered RNAi to silence IGF-IR gene expression in the human lung cancer cell line A549, and then evaluate its effects on apoptosis, apoptosis-related gene expression, and the growth of tumor cells in vitro and in nude mice. IGF-IR expression levels were found to markedly decrease in cells transfected with a plasmid expressing hairpin siRNA for IGF-IR (by more than 78.9%). Down-regulation of IGR-IR concomitantly accompanied reduction of bcl-2 as well as pERK and pAkt levels, activation of caspase-3, apoptosis and growth inhibition of A549 cells in vitro. Direct intratumoral injections of plasmid DNA expressing hpRNA for IGF-IR significantly regressed pre-established tumors in nude mice. Our results support the therapeutic potential of RNAi as a method for gene therapy in treating lung cancer.
MicroRNAs (miRNAs) are one class of non-coding RNAs that play an important role in post-transcriptional regulation via the degradation or translational inhibition of their target genes. MicroRNA-150 (miR-150) plays a vital role in regulating the development of B and T lymphocytes. Although the dysregulation of miR-150 was confirmed in human myocardial infarction, little is known regarding the biological functions of miR-150 in response to reactive oxygen species (ROS)-mediated gene regulation in cardiac myocytes. Using quantitative real-time reverse transcription-polymerase chain reaction, we demonstrated that the level of miR-150 was up-regulated in cardiac myocytes after treatment with hydrogen peroxide (H 2 O 2 ). To identify the potential roles of miR-150 in H 2 O 2 -mediated gene regulation, we modulated expression of miR-150 using miR-150 inhibitor and miR-150 mimics. Results showed that silencing expression of miR-150 decreased H 2 O 2 -induced cardiac cell death and apoptosis. In lymphocytes, c-myb was a direct target of miR-150. In cardiac myocytes, we found that c-myb was also involved in miR-150-mediated H 2 O 2 -induced cardiac cell death. These results suggested that miR-150 participates in H 2 O 2 -mediated gene regulation and functional modulation in cardiac myocytes. MiR-150 may play an essential role in heart diseases related to ROS, such as cardiac hypertrophy, heart failure, myocardial infarction, and myocardial ischemia/reperfusion injury.
Cancer invasion and metastasis, involving a variety of pathological processes and cytophysiological changes, contribute to the high mortality of lung cancer. The type 1 insulin-like growth factor receptor (IGF-1R), associated with cancer progression and invasion, is a potential anti-invasion and anti-metastasis target in lung cancer. To inhibit the invasive properties of lung cancer cells, we successfully down-regulated IGF-1R gene expression in A549 human lung cancer cells by small interfering RNA (siRNA) technology, and evaluated its effects on invasion-related gene expression, tumor cell in vitro invasion, and metastasis in xenograft nude mice. A549 cells transfected with a plasmid expressing hairpin siRNA for IGF-1R showed a significantly decreased IGF-1R expression at the mRNA level as well as the protein level. In biological assays, transfected A549 cells showed a significant reduction of cell-matrix adhesion, migration and invasion. Consistent with these results, we found that down-regulation of IGR-1R concomitantly accompanied by a large reduction in invasion-related gene expressions, including MMP-2, MMP-9, u-PA, and IGF-1R specific downstream p-Akt. Direct tail vein injections of plasmid expressing hairpin siRNA for IGF-1R significantly inhibited the formation of lung metastases in nude mice. Our results showed the therapeutic potential of siRNA as a method for gene therapy in inhibiting lung cancer invasion and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.