Background. More and more evidence has shown that immune-related long noncoding ribonucleic acid (irlncRNAs) is a potential prognostic factor for colon cancer. The relevant gene pair pattern can improve the sensitivity of the prognostic model. Therefore, our present study aimed to identify irlncRNA Pairs and construct and validate a new prognostic signature in colon cancer. Methods. We downloaded the expression matrix of mRNA and lncRNA of patients with colon cancer and their clinical information from the public TCGA database. We obtained immune genes from the ImmPort database. Coexpression analysis was performed to identify irlncRNAs. We built an irlncRNA pair matrix by comparing the expression levels of each lncRNA pair in a cycle. Univariate Cox regression analysis, LASSO penalized regression analysis, and multivariate Cox regression analysis were performed to determine the final variables to construct the prognostic risk score model (a new signature). We draw the receiver operating characteristic (ROC) curves of the signature and clinical characteristics and determine the optimal cutoff value by the optimal Akaike Information Criterion (AIC) value. Based on the optimal cutoff value of the ROC curve of the signature, colon cancer patients were divided into the high- and low-risk groups. Then, the signature was evaluated by clinicopathological features, tumor-infiltrating immune cells, checkpoint-related biomarkers, targeted therapy, and chemotherapy. Results. We identified 8 lncRNA pairs including AC103740.1|LEF1-AS1, LINC02391|AC053503.5, WWC2-AS2|AL355916.2, AC104090.1|NEURL1-AS1, AC099524.1|AL161908.1, AC074011.1|AL078601.2, AL355916.2|LINC01723, and AP003392.4|LINC00598 from 71 differently expressed irlncRNAs. We constructed a prognostic risk score model (a new signature) using these optimal eight irlncRNA pairs. ROC curve analysis revealed that the highest AUC value of the signature was 0.776 at 1 year, with the optimal cutoff value of 1.283. Our present study also showed that the constructed signature could accurately identify adverse survival outcomes, prognostic clinicopathological features, and specify tumor invasion status. The expression of immune checkpoint-related genes and chemical drug sensitivity were related to different risk groups. Conclusion. In our present study, we constructed a new irlncRNA signature of colon cancer based on the irlncRNA pairs instead of the special expression level of lncRNA. We found this signature had not only good prognostic value but also certain clinical value, which might provide a new insight into the treatment and prognosis of colon cancer.
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has a huge influence on global public health and the economy. Lung cancer is one of the high-risk factors of COVID-19, but the molecular mechanism of lung cancer and COVID-19 is still unclear, and further research is needed. Therefore, we used the transcriptome information of the public database and adopted bioinformatics methods to identify the common pathways and molecular biomarkers of lung cancer and COVID-19 to further understand the connection between them. The two RNA-seq data sets in this study—GSE147507 (COVID-19) and GSE33532 (lung cancer)—were both derived from the Gene Expression Omnibus (GEO) database and identified differentially expressed genes (DEGs) for lung cancer and COVID-19 patients. We conducted Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis and found some common features between lung cancer and COVID-19. We also performed TFs-gene, miRNAs-gene, and gene-drug analyses. In total, 32 DEGs were found. A protein-protein interaction (PPI) network was constructed by DEGs, and 10 hub genes were screened. Finally, the identified drugs may be helpful for COVID-19 treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.