Background
It is significant to model clinical activities for process mining, which assists in improving medical service quality. However, current process mining studies in healthcare pay more attention to the control flow of events, while the data properties and the time perspective are generally ignored. Moreover, classifying event attributes from the view of computers usually are difficult for medical experts. There are also problems of model sharing and reusing after it is generated.
Methods
In this paper, we presented a constraint-based method using multi-perspective declarative process mining, supporting healthcare personnel to model clinical processes by themselves. Inspired by openEHR, we classified event attributes into seven types, and each relationship between these types is represented in a Constrained Relationship Matrix. Finally, a conformance checking algorithm is designed.
Results
The method was verified in a retrospective observational case study, which consists of Electronic Medical Record (EMR) of 358 patients from a large general hospital in China. We take the ischemic stroke treatment process as an example to check compliance with clinical guidelines. Conformance checking results are analyzed and confirmed by medical experts.
Conclusions
This representation approach was applicable with the characteristic of easily understandable and expandable for modeling clinical activities, supporting to share the models created across different medical facilities.
An automatic method for cartilage segmentation using knee MRI images is described. Three binary classifiers with integral and partial pixel features are built using the Bayesian theorem to segment the femoral cartilage, tibial cartilage and patellar cartilage separately. First, an iterative procedure based on the feedback of the number of strong edges is designed to obtain an appropriate threshold for the Canny operator and to extract the bone-cartilage interface from MRI images. Second, the different edges are identified based on certain features, which allow for different cartilage to be distinguished synchronously. The cartilage is segmented preliminarily with minimum error Bayesian classifiers that have been previously trained. According to the cartilage edge and its anatomic location, the speed of segmentation is improved. Finally, morphological operations are used to improve the primary segmentation results. The cartilage edge is smooth in the automatic segmentation results and shows good consistency with manual segmentation results. The mean Dice similarity coefficient is 0.761.
Background: Although clinical guidelines provide the best practice for medical activities, there are some limitations in using clinical guidelines to assistant decision-making in practical application, such as long update cycle and low compliance of doctors with the guidelines. Driven by data of actual cases, process mining technology provides the possibility to remedy these shortcomings of clinical guidelines. Methods: We propose a clinical decision support method using predictive process monitoring, which could be complementary with clinical guidelines, to assist medical staff with thrombolytic therapy decision-making for stroke patients. Firstly, we construct a labeled data set of 1191 cases to show whether each case actually need thrombolytic therapy, and whether it conform to the clinical guidelines. After prefix extraction and filtering the control flow of completed cases, the sequences with data flow are encoded, and corresponding prediction models are trained. Results: Compared with the labeled results, the average accuracy of our prediction models for intravenous thrombolysis and arterial thrombolysis on the test set are 0.96 and 0.91, and AUC are 0.93 and 0.85 respectively. Compared with the recommendation of clinical guidelines, the accuracy, recall and AUC of our predictive models are higher. Conclusions: The performance and feasibility of this method are verified by taking thrombolytic decision-making of patients with ischemic stroke as an example. When the clinical guidelines are not applicable, doctors could be provided with assistant decision-making by referring to similar historical cases using predictive process monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.