Nanoglasses are solids consisting of nanometer-sized glassy regions connected by interfaces having a reduced density. We studied the structure of Sc(75)Fe(25) nanoglasses by electron microscopy, positron annihilation spectroscopy, and small-/wide-angle X-ray scattering. The positron annihilation spectroscopy measurements showed that the as-prepared nanoglasses consisted of 65 vol% glassy and 35 vol% interfacial regions. By applying temperature annealing to the nanoglasses and measuring in situ small-angle X-ray scattering, we observed that the width of the interfacial regions increased exponentially as a function of the annealing temperature. A quantitative fit to the small-angle X-ray scattering data using a Debye-Bueche random phase model gave a correlation length that is related to the sizes of the interfacial regions in the nanoglass. The correlation length was found to increase exponentially from 1.3 to 1.7 nm when the sample temperature was increased from 25 to 230 °C. Using simple approximations, we correlate this to an increase in the width of interfacial regions from 0.8 to 1.2 nm, while the volume fraction of interfacial regions increased from 31 to 44%. Using micro-compression measurements, we investigated the deformation behavior of ribbon glass and the corresponding nanoglass. While the nanoglass exhibited a remarkable plasticity even in the annealed state owing to the glass-glass interfaces, the corresponding ribbon glass was brittle. As this difference seems not limited to Sc(75)Fe(25) glasses, the reported result suggest that nanoglasses open the way to glasses with high ductility resulting from the nanometer sized microstructure.
We report upon the excellent magnetocaloric properties of Gd53Al24Co20Zr3 amorphous microwires. In addition to obtaining the large magnetic entropy change (−ΔSM ∼ 10.3 J/kg K at TC ∼ 95 K), an extremely large value of refrigerant capacity (RC ∼ 733.4 J/kg) has been achieved for a field change of 5 T in an array of forty microwires arranged in parallel. This value of RC is about 79% and 103% larger than those of Gd (∼410 J/kg) and Gd5Si2Ge1.9Fe0.1 (∼360 J/kg) regardless of their magnetic ordering temperatures. The design and fabrication of a magnetic bed made of these parallel-arranged microwires would thus be a very promising approach for active magnetic refrigeration for nitrogen liquefaction. Since these microwires can easily be assembled as laminate structures, they have potential applications as a cooling device for micro electro mechanical systems and nano electro mechanical systems.
In this letter, a physical concept of binary eutectic clusters in “ideal” glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr–Ni–Cu–Al and Zr–Fe–Cu–Al systems were identified with the use of the strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.