Block Yingmai 7 is structurally located in the western segment of the southern margin of the Kuqa Depression in the Tarim Basin. In the foreland basin, huge continental Mesozoic and Cenozoic strata have been deposited. In recent years, the Paleogene bottom sandstone section has been the main oil and gas exploration horizon. In order to further improve the oil and gas exploration effect of the Paleogene bottom sandstone in the study area and improve the accuracy of reservoir prediction, based on the related theory of sedimentology and petrology, this paper analyzes and studies the cores obtained by drilling in the Paleogene through laboratory core analysis experiments. The study shows that the Paleogene bottom sandstone is a braided river delta sedimentary system, and the sedimentary microfacies are mainly underwater distributary channels. The sandstone type is mainly light gray lithic feldspar fine sandstone, the sandstone debris particle sorting degree is medium-good, and the roundness is sub-edge-sub-circular. The microscopic characteristics of the reservoir are large pore throat radius, low displacement pressure, mainly intergranular pores, and good pore connectivity. It is a thin-layered mesoporous, medium-permeable, large-throat, and strongly heterogeneous reservoir. Finally, a classification evaluation table of reservoirs in block Yingmai 7 is established, and it is considered that the reservoirs of types I and II are enriched areas of oil and gas resources. The research results provide evidence for the prediction of oil and gas reservoirs.
In recent years, petroleum exploration in the Carboniferous volcanic rock reservoirs in the Junggar Basin has been the focus of important petroleum energy development in western China. The lithologic identification of volcanic rock reservoirs seriously restricts the accuracy of reservoir prediction and affects the success rate of oil exploration. Different types of volcanic rocks have different petrological characteristics and mineral assemblages, especially affected by the depositional environment. The volcanic rocks in different regions have their own uniqueness. This paper takes the Carboniferous volcanic reservoirs in Xiquan block, Beisantai Oilfield, Junggar Basin as the research target. Through a large number of core observations, casting slices, scanning electron microscopy, and X-ray diffraction methods, the Carboniferous volcanic rocks are analyzed. The petrology, pore characteristics, physical properties, and diagenetic evolution history of the reservoir are analyzed. The study shows that the volcanic facies in the Xiquan block can be divided into explosive facies, overflow facies, and volcanic sedimentary facies, among which the explosive facies is subdivided into empty subfacies (volcanic breccia-breccia tuff combination) and thermal base wave subfacies (tuff). The lithology of the reservoir is pyroclastic rock and volcanic lava, belonging to medium-porous and ultralow permeability reservoirs, and the storage space can be divided into three types: primary pores, secondary pores, and fractures. The lithology of key exploration is breccia tuff, followed by breccia tuff and volcanic breccia.
Hydraulic fracturing, as an oil-water well stimulation and injection technology, is particularly important in the production and stimulation of low-permeability oil and gas fields, and the performance of the fracturing fluid directly affects the success of the fracturing operation. Compared with traditional water-based fracturing fluids, clean fracturing fluids have the advantages of strong sand-carrying ability and easy gel breaking with no residue. Aiming at the problem of poor temperature resistance and shear resistance of the clean fracturing fluid, based on previous research, this paper selects a high-temperature-resistant clean fracturing fluid system and evaluates the performance of the system. The research results show that the system has better rheological properties, better sand-carrying performance, shorter gel-breaking time, and less damage to the reservoir.
Formation pressure gradually decreases with fracturing fluid flowback and gas production. Due to the stress sensitivity of the fractures, the permeability of the artificial fractures after fracturing becomes lower, which significantly affects gas well productivity. This paper focuses on two questions: (1) the stress sensitivity of proppant-containing fractures with different roughness and (2) tight gas well productivity considering stress sensitivity. Two types of artificial fracture samples, smooth and rough, are prepared and filled with different proppant concentrations. Then, the changing confining pressure method is used to quantify sample stress sensitivity. On this basis, the productivity equation for the fractured well with finite conductivity that considers fracture and matrix stress sensitivity is derived, and the influence of stress sensitivity on productivity is discussed. The results show that proppant concentration and fracture surface roughness will significantly affect fracture permeability and stress sensitivity; with increasing proppant concentration, fracture permeability increases, stress sensitivity decreases, and well productivity increases; under the same proppant concentration, the stress sensitivity is lower and the gas production is higher for smooth fracture; and when the artificial fracture changes from no proppant to proppant, the productivity of the fracturing well is improved the most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.