Statistical-relational learning combines logical syntax with probabilistic methods. Markov Logic Networks (MLNs) are a prominent model class that generalizes both firstorder logic and undirected graphical models (Markov networks). The qualitative component of an MLN is a set of clauses and the quantitative component is a set of clause weights. Generative MLNs model the joint distribution of relationships and attributes. A state-ofthe-art structure learning method is the moralization approach: learn a set of directed Horn clauses, then convert them to conjunctions to obtain MLN clauses. The directed clauses are learned using Bayes net methods. The moralization approach takes advantage of the high-quality inference algorithms for MLNs and their ability to handle cyclic dependencies. A weakness of moralization is that it leads to an unnecessarily large number of clauses. In this paper we show that using decision trees to represent conditional probabilities in the Bayes net is an effective remedy that leads to much more compact MLN structures. In experiments on benchmark datasets, the decision trees reduce the number of clauses in the moralized MLN by a factor of 5-25, depending on the dataset. The accuracy of predictions is competitive with the models obtained by standard moralization, and in many cases superior.
Statistical-relational learning combines logical syntax with probabilistic methods. Markov Logic Networks (MLNs) are a prominent model class that generalizes both first-order logic and undirected graphical models (Markov networks). The qualitative component of an MLN is a set of clauses and the quantitative component is a set of clause weights. Generative MLNs model the joint distribution of relationships and attributes. A state-of-the-art structure learning method is the moralization approach: learn a set of directed Horn clauses, then convert them to conjunctions to obtain MLN clauses. The directed clauses are learned using Bayes net methods. The moralization approach takes advantage of the high-quality inference algorithms for MLNs and their ability to handle cyclic dependencies. A weakness of moralization is that it leads to an unnecessarily large number of clauses. In this paper we show that using decision trees to represent conditional probabilities in the Bayes net is an effective remedy that leads to much more compact MLN structures. In experiments on benchmark datasets, the decision trees reduce the number of clauses in the moralized MLN by a factor of 5-25, depending on the dataset. The accuracy of predictions is competitive with the models obtained by standard moralization, and in many cases superior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.