A three-dimensional (3D) multiple phase field model, which takes into account the grain boundary (GB) energy anisotropy caused by texture, is established based on real grain orientations and Read–Shockley model. The model is applied to the grain growth process of polycrystalline Mg (ZK60) alloy to investigate the evolution characteristics in different systems with varying proportions of low-angle grain boundary (LAGB) caused by different texture levels. It is found that the GB energy anisotropy can cause the grain growth kinetics to change, namely, higher texture levels (also means higher LAGB proportion) result in lower kinetics, and vice versa. The simulation results also show that the topological characteristics, such as LAGB proportion and distribution of grain size, undergo different evolution characteristics in different systems, and a more serious grain size fluctuation can be caused by a higher texture level. The mechanism is mainly the slower evolution of textured grains in their accumulation area and the faster coarsening rate of non-textured grains. Therefore, weakening the texture level is an effective way for implementing a desired homogenized microstructure in ZK60 Mg alloy. The rules revealed by the simulation results should be of great significance for revealing how the GB anisotropy affects the evolution of polycrystalline during the grain growth after recrystallization and offer the ideas for processing the alloy and optimizing the microstructure.
Based on the principle of grain refinement caused by the second-phase particles, a phase field model was built to describe the recrystallization process in the ZK60 alloy system with Y added under applied stress between temperatures 573 and 673 K for 140 min duration. The simulation of grain growth with second phase particles and applied stress during annealing process on industrial scale on the condition of real time-space was achieved. Quantitative analysis was carried out and some useful laws were revealed in ZK60 alloy system. The second phase particles had a promoting effect on the grain refinement, however the effect weakened significantly when the content exceeded 1.5%. Our simulation results reveal the existence of a critical range of second phase particle size of 0.3–0.4 μm, within which a microstructure of fine grains can be obtained. Applied stress increased the grain coarsening rate significantly when the stress was more than 135 MPa. The critical size of the second phase particles was 0.4–0.75 μm when the applied stress was 135 MPa. Finally, a microstructure with a grain size of 11.8–13.8 μm on average could be obtained when the second phase particles had a content of 1.5% and a size of 0.4–0.75 μm with an applied stress less than 135 Mpa after 30 min annealing at 573 K.
Abstract:Graphene is an ideal reinforcement material for metal-matrix composites owing to its exceptional mechanical properties. However, as a 2D layered material, graphene shows highly anisotropic behavior, which greatly affects the mechanical properties of graphene-based composites. In this study, the interaction between an edge dislocation (b = 1/2 (111)) and a pair of graphene nanosheets (GNSs) in GNS reinforced iron matrix composite (GNS/Fe) was investigated using molecular dynamic simulations under simple shearing conditions. We studied the cases wherein the GNS pair was parallel to the (110), (112), and (111) planes, respectively. The results showed that the GNS reinforcement can effectively hinder dislocation motion, which improves the yield strength. The interaction between the edge dislocation and the GNS pair parallel to the (112) plane showed the strongest effect of blocking dislocations among the three cases, resulting in increases in the shear modulus and yield stress of 107% and 1400%, respectively. This remarkable enhancement was attributed to the Orowan "by-passing" strengthening mechanism, whereas cross-slip of dislocation segments was observed during looping around GNSs. Our results might contribute to the development of high-strength iron matrix composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.