This work is devoted to deriving the entropy of a single photon in a beam of light from first principles. Based on the quantum processes of light–matter interaction, we find that, if the light is not in equilibrium, there are two different ways, depending on whether the photon is being added or being removed from the light, of defining the single-photon entropy of this light. However, when the light is in equilibrium at temperature T, the two definitions are equivalent and the photon entropy of this light is hν/T. From first principles, we also re-derive the Jüttner velocity distribution showing that, even without interatomic collisions, two-level atoms will relax to the state satisfying the Maxwell–Jüttner velocity distribution when they are moving in blackbody radiation fields.
This work is devoted to deriving a more accurate reaction–diffusion equation for an A/B binary system by summing over microscopic trajectories. By noting that an originally simple physical trajectory might be much more complicated when the reactions are incorporated, we introduce diffusion–reaction–diffusion (DRD) diagrams, similar to the Feynman diagram, to derive the equation. It is found that when there is no intermolecular interaction between A and B, the newly derived equation is reduced to the classical reaction–diffusion equation. However, when there is intermolecular interaction, the newly derived equation shows that there are coupling terms between the diffusion and the reaction, which will be manifested on the mesoscopic scale. The DRD diagram method can be also applied to derive a more accurate dynamical equation for the description of chemical reactions occurred in polymeric systems, such as polymerizations, since the diffusion and the reaction may couple more deeply than that of small molecules.
In this work, we systematically study an immiscible binary system undergoing thermal/photo reversible reactions in theory. For the thermal reaction case, no dissipative structures can be formed and only uniform...
This study represents the first attempt to address the inverse design problem of the guiding template for directed self-assembly (DSA) patterns using solely machine learning methods. By formulating the problem as a multi-label classification task, the study shows that it is possible to predict templates without requiring any forward simulations. A series of neural network (NN) models, ranging from the basic two-layer convolutional neural network (CNN) to the large NN models (32-layer CNN with 8 residual blocks), have been trained using simulated pattern samples generated by thousands of self-consistent field theory (SCFT) calculations; a number of augmentation techniques, especially suitable for predicting morphologies, have been also proposed to enhance the performance of the NN model. The exact match accuracy of the model in predicting the template of simulated patterns was significantly improved from 59.8% for the baseline model to 97.1% for the best model of this study. The best model also demonstrates an excellent generalization ability in predicting the template for human-designed DSA patterns, while the simplest baseline model is ineffective in this task.
The way to theoretically approach dynamic and static topological constraints of polymer entanglements still presents a great challenge in polymer physics. So far, only the problem of static entanglement with multiple simple objects has been solved in theory by a superspace approach in our previous work. This work is devoted to extending the superspace approach to study a polymer chain entangled with a relatively complicated object—a ring-shaped object with genus one. Taking advantage of the axial symmetry of the model setup, the 3D diffusion equations in the superspace can be numerically solved within the 2D coordinates using a specially designed alternating-direction implicit (ADI) scheme. A series of numerical calculations reveal that the topological entanglement effect of the ring will exert a topological entropy attractive force on the linear chain, which can be used to explain the viscosity-increase phenomenon observed in recent simulations and experiments. Furthermore, the influences of the ring size and the entangling modes on the topological entropy force are also investigated by examining the corresponding force-extension curves. This work, together with our previous work, might pave the path toward the complete formulation of static topological constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.