Amitriptyline is a frequently prescribed tricyclic antidepressant. Although amitriptyline and its active metabolite, nortriptyline, have been widely detected in natural waters, their environmental fate due to photodegradation is poorly understood. Here we describe a study conducted to investigate the photodegradation of amitriptyline and its active metabolite under simulated sunlight. Neither amitriptyline nor nortriptyline underwent direct photodegradation, but rapid photosensitized degradation did occur in fulvic acid (FA) solutions. The photodegradation of amitriptyline and nortriptyline followed pseudo-first-order kinetics with rate constants 0.24 and 0.16 h, respectively, at pH 8.0 in air-saturated FA solutions. The photodegradation of the substrates increased markedly with pH. The deprotonation of amitriptyline and nortriptyline facilitated the availability of nonbonding electrons on nitrogen (N-electrons). The excited triplet state of FA (FA*) was verified as the main reactive species responsible for the photosensitized degradation. An electron transfer mechanism for the interaction between substrates and FA* was proposed on the basis of a series of quenching experiments, kinetic model and photoproducts determination. Demethylation at the α-carbon of amine and hydroxylation were two primary photochemical processes initiated by the electron transfer reaction in the air-saturated FA solution; these were followed by generation of demethyl amine and mono-hydroxylation isomers. Our results suggest that indirect photodegradation is an important elimination process for amitriptyline and its active metabolite in natural waters.
The ability of Sargassum hemiphyllum to remove methylene blue (MB) from aqueous solution was evaluated. Batch experiments were conducted to examine the effects of parameters such as initial pH, contact time, biomass dose and initial dye concentration on adsorption capacity. S. hemiphyllum before and after MB adsorption was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The Langmuir isotherm model provided the best correlation with experimental data, and the monolayer biosorption capacity was 729.93 mg·g within 120 min using 0.5 g·L algal biomass and pH of 5. The pseudo-second-order kinetic model accurately described the adsorption kinetics data. Thermodynamic parameters (ΔG, ΔH and ΔS) at temperature ranges of 293-313 K demonstrated that biosorption is an endothermic and spontaneous reaction. FT-IR analysis showed that the hydroxyl, amine and carboxyl functional groups on the surface of the algae were the most important functional groups for biosorption of MB. XPS analysis indicated that the algal biomass combined with MB molecules through -NH groups. These results suggest that S. hemiphyllum is a favorable biosorbent for removing MB dye from wastewater.
The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg, with a mean of 5.74 mg kg, which were significantly higher than the background value of soil in China (0.58 mg kg). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg, respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government should take various measures to treat Tl contamination, especially the tailings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.