Road traffic accident databases provide the basis for road traffic accident analysis, the data inside which usually has a radial, multidimensional, and multilayered structure. Traditional data mining algorithms such as association rules, when applied alone, often yield uncertain and unreliable results. An improved association rule algorithm based on Particle Swarm Optimization (PSO) put forward by this paper can be used to analyze the correlation between accident attributes and causes. The new algorithm focuses on characteristics of the hyperstereo structure of road traffic accident data, and the association rules of accident causes can be calculated more accurately and in higher rates. A new concept of Association Entropy is also defined to help compare the importance between different accident attributes. T-test model and Delphi method were deployed to test and verify the accuracy of the improved algorithm, the result of which was a ten times faster speed for random traffic accident data sampling analyses on average. In the paper, the algorithms were tested on a sample database of more than twenty thousand items, each with 56 accident attributes. And the final result proves that the improved algorithm was accurate and stable.
With the study of traffic crashes on curved road segments as the focus of research, a logistic regression based curve road crash severity prediction model was established based on a sample crash database of 20000 entries collected from 4 regions of China and 15 evaluation indicators involving driver, driving environment, and traffic environment factors. Maximum Likelihood Estimation and step-back technique were deployed for data analysis, the conclusion of which is that the three main contributory factors on curve road crash severity are weather, roadside protection facility, and pavement structure. Hosmer and Lemeshow tests were used to verify the reliability of the model, and the model variables were discussed to a certain degree as well.
Pedestrians are some of the worst victims, as one of the weaker groups in road traffic accidents, but, at the same time, their unsafe behaviors are also an important factor in traffic accidents. This paper builds a pedestrian crossing hazard automatic-balance model and waiting-time threshold model by analyzing the process by which pedestrians cross the street. Then, the reasons for pedestrians’ unsafe behavior when crossing the street are analyzed by using traffic psychology. Finally, this paper puts forward some measures, based on aspects of pedestrian psychology, to reduce or alleviate pedestrians’ unsafe behaviors.
The number and severity of bus traffic accidents are increasing annually. Therefore, this paper uses the historical data of Chongqing Liangjiang Public Transportation Co., Ltd. bus driver safety violations, service violations, and road traffic accidents from January to June 2022 and constructs road traffic accident prediction models using Extra Trees, BP Neural Network, Support Vector Machine, Gradient Boosting Tree, and XGBoost. The effects of safety and service violations on vehicular accidents are investigated. The quality of the prediction models is measured by five indicators: goodness of fit, mean square error, root mean square error, mean absolute error, and mean absolute percentage error. The results indicate that the XGBoost model provides the most accurate predictions. Additionally, simultaneously considering safety and service violations can improve the accuracy of the model’s predictions compared to a model that only considers safety violations. Bus safety violations, bus service violations, and bus safety operation violations significantly influence traffic accidents, which account for 27.9%, 20%, and 16.5%, respectively. In addition to safety violations, the service violation systems established by bus companies, such as bus service codes, can be an effective method of regulating the behavior of bus drivers and reducing accidents. They are improving both the safety and quality of public transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.