Structural health monitoring (SHM) has received increasing attention in the research community over the past two decades. Most of the relevant research focuses on linear structural damage detection. However, the majority of the damage in civil engineering structures is nonlinear, such as fatigue cracks that open and close under dynamic loading. In this study, a new hybrid AR/ARCH model in the field of economics and a proposed damage indicator (DI) which is the second-order variance indicator (SOVI) based on the model have been used for detecting structural nonlinear damage. The data from an experimental three-storey structure and a simulated eight-storey shear building structure model have been used to verify the effectiveness of the algorithm and SOVI. In addition, a traditional linear DI: cepstral metric indicator (CMI) has also been used to diagnose the nonlinear damage. The results of the CMI and SOVI were compared and it is found that there are advantages in using the SOVI in the field of nonlinear structural damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.