The oxide phosphor (Y1-xDyx)2O3(x=0-0.1) was obtained by calcining their respective precursors synthesized by homogeneous precipitation technique using rare earth nitrate as mother salt and urea as precipitating agent. The particle shape/size, fluorescent properties (especially the influence of Dy3+ concentration and calcination temperature) of the product was studied in detail. The results showed that the precursors exhibit monodisperse spherical morphology whose size can be controlled by adjusting the urea content. The phase pure (Y1-xDyx)2O3 can be obtained by calcining precursor at least 600 °C, and the monodisperse spherical morphology can be kept at even high temperature of 1000 °C. The (Y1-xDyx)2O3 phosphors exhibit strong yellow emission at ~577 nm (4F9/2→6H13/2 transition of Dy3+) and blue emission at ~491 nm (4F9/2→6H15/2 transition of Dy3+) upon optimal excitation wavelength of ~352 nm. The quenching concentration of Dy3+ was determined to be ~2 at% (x=0.02). The emission intensity of (Y1-xDyx)2O3 phosphors can be improved with the temperature and particle size increasing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.