LncRNA-XIST participated in the regulation of Non-small cell lung cancer (NSCLC) progression, but the underlying mechanisms are still unclear. This study showed that LncRNA-XIST aberrantly overexpressed in either NSCLC tissues or cell lines comparing to their paired control groups. Knock-down of LncRNA-XIST promoted NSCLC cell apoptosis and inhibited cell proliferation, which were reversed by synergistically treating cells with pyroptosis inhibitor Necrosulfonamide (NSA). In addition, knock-down of LncRNA-XIST also promoted reactive oxygen species (ROS) production and NLRP3 inflammasome activation. In parallel, ROS scavenger N-acetyl cysteine (NAC) abrogated the effects of downregulated LncRNA-XIST on NSCLC cell pyroptosis. Furthermore, miR-335 was the downstream target of LncRNA-XIST and overexpressed LncRNA-XIST increased SOD2 expression levels by sponging miR-335. Mechanistically, miR-335 inhibitor reversed the effects of downregulated LncRNA-XIST on ROS levels and cell pyroptosis, which were abrogated by synergistically knocking down SOD2. Taken together, knock-down of LncRNA-XIST inhibited NSCLC progression by triggering miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death.
Hair graying and hair loss are prominent and common characteristics of the elderly population. In some individuals these processes can significantly impact their quality of life, leading to depression, anxiety and other serious mental health problems. Accordingly, there has been much interest in understanding the complex physiological changes within the hair follicle in the aging individual. It is now known that hair follicles represent a prototypical stem cell niche, where both micro- and macroenvironmental influences are integrated alongside stem cell-stem cell and stem cell-stem niche interactions to determine hair growth or hair follicle senescence. Recent studies have identified imbalanced stem cell differentiation and altered stem cell activity as important factors during hair loss, indicating new avenues for the development of therapeutic agents to stimulate hair growth. Here, we pull together the latest findings on the hair follicle stem cell niche and the multifactorial interactions underlying the various forms of hair loss.
Keloids are one of the common refractory conditions in dermatology and aesthetic plastic surgery. The most effective treatment is superficial radiotherapy followed by surgical removal. The rate of recurrence is strongly associated with the total dose of ionizing irradiation, and the underlying mechanism remains unclear. In this study, we used primary keloid fibroblasts (KFb) isolated from patient samples to investigate the effects of X-ray radiation on cell proliferation, cell toxicity and cell cycle, as detected by CCK-8 assay kit and flow cytometer. In addition, we examined senescence-associated b-galactosidase activity and the associated gene expression using real-time polymerase chain reaction and western blot in KFb exposed to X-ray radiation. X-ray radiation inhibited cell proliferation and induced cell senescence in KFb in a dose-dependent manner. Inhibition of cell proliferation and induction of cellular senescence were mediated by interruption of the cell cycle with an extended G0/G1 phase. Furthermore, the expressions of senescence-associated genes p21, p16 and p27 were upregulated both at mRNA and protein levels in KFb exposed to X-ray radiation. Taken together, our data indicate that X-ray radiation may prevent the recurrence of keloids by controlling fibroblast proliferation, arresting the cell cycle and inducing premature cellular senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.