The traditional antidepressants have a major disadvantage in delayed onset of efficacy, and the emerging fast-acting antidepressant ketamine has adverse behavioral and neurotoxic effects. Yueju pill, an herb medicine formulated eight hundred years ago by Doctor Zhu Danxi, has been popularly prescribed in China for alleviation of depression-like symptoms. Although several clinical outcome studies reported the relative short onset of antidepressant effects of Yueju, this has not been scientifically investigated. We, therefore, examined the rapid antidepressant effect of Yueju in mice and tested the underlying molecular mechanisms. We found that acute administration of ethanol extract of Yueju rapidly attenuated depressive-like symptoms in learned helpless paradigm, and the antidepressant-like effects were sustained for at least 24 hours in tail suspension test in ICR mice. Additionally, Yueju, like ketamine, rapidly increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, whereas the BDNF mRNA expression remained unaltered. Yueju rapidly reduced the phosphorylation of eukaryotic elongation factor 2 (eEF2), leading to desuppression of BDNF synthesis. Unlike ketamine, both the BDNF expression and eEF2 phosphorylation were revered at 24 hours after Yueju administration. This study is the first to demonstrate the rapid antidepressant effects of an herb medicine, offering an opportunity to improve therapy of depression.
As a biobased and biodegradable polyester, polylactide (PLA) is widely applied in disposable products, biomedical devices, and textiles. Nevertheless, due to its inherent brittleness and inferior strength, simultaneously reinforcing and toughening of PLA without sacrificing its biodegradability is highly desirable. In this work, a robust assembly consisting of compact and well-ordered microfibrillar crystalline superstructure (FCS) surrounded by slightly oriented amorphism, is achieved by a combined external force field. Unlike the classic crystalline superstructures such as shish-kebabs, cylindrites, and lamellae, the newfound FCS with diameter of about 100 nm and length of several tens of micrometers is aggregated with well-aligned crystalline nanofibers. FCS can serve as discontinuous fiber to self-reinforce the amorphous PLA; more importantly, FCS can also act as rivets to pin the propagating fibrillar crazes leading to the formation of dense fibrillar crazes during stretching, which dissipates much energy and translates the failure of PLA from brittle to ductile. Consequently, PLA with FCS exhibits exceptionally simultaneous enhancement in ductility, strength, and stiffness, outperforming normal PLA with increments of 728, 55, and 70% in elongation at break, strength, and modulus, respectively. Therefore, FSC exhibits competitive advantages in achieving high-performance PLA even for other semicrystalline polymers. More significantly, this newfound crystalline superstructure (FCS) provides a new structural model to establish the correlation between structure and performance.
A particular sense, touchable gustation, was achieved. We proposed a chemical–mechanical interface strategy with an iontronic sensor device. A conductive hydrogel, amino trimethylene phosphonic acid (ATMP) assisted poly(vinyl alcohol) (PVA), was employed as the dielectric layer of the gel iontronic sensor. The Hofmeister effect of the ATMP-PVA hydrogel was well investigated to establish the quantitative description of the gel elasticity modulus to chemical cosolvents. The mechanical properties of hydrogels can be transduced extensively and reversibly by regulating the aggregation state of polymer chains with hydrated ions or cosolvents. Scanning electron microscopy (SEM) images of ATMP-PVA hydrogel microstructures stained with different soaked cosolvents present different networks. The information on different chemical components will be stored in the ATMP-PVA gels. The flexible gel iontronic sensor with a hierarchical pyramid structure performed high linear sensitivity of 3224.2 kPa–1 and wide pressure response in the range of 0–100 kPa. The finite element analysis proved the pressure distribution at the gel interface of the gel iontronic sensor and the capacitation–stress response relation. Various cations, anions, amino acids, and saccharides can be discriminated, classified, and quantified with the gel iontronic sensor. The Hofmeister effect regulated chemical–mechanical interface performs the response and conversion of biological/chemical signals into electrical output in real time. The particular function to tactile with gustation percept will contribute promising applications in the human–machine interaction, humanoid robot, clinic treatment, or athletic training optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.