Vegetable growth requires a relatively stable environment for the root zone. If the temperature in root zone environment is optimal, the aeroponic cultivation will be energy-efficient, and the aeroponic vegetables will grow well at high, normal, or low temperature. By computational fluid dynamics (CFD), this paper numerically simulates the root zone temperature of lettuce in the aeroponic cultivation box, after the box was sprayed with nutrient solutions of different temperatures. Then, the root zone environments of aeroponic lettuce were monitored through experiments at three different temperatures: high temperature, normal temperature, and low temperature. Through comparison, it was learned that the error between the simulated and measured values at each point was smaller than 1.35℃; the maximum error at a single point was within 7.4%; overall, the mean relative error was merely 5.8%. The results prove that the proposed CFD simulation model is reasonable and effective. Our research provides a theoretical reference for optimizing the root zone temperature, regulating the spray of nutrient solutions at different temperatures, and building an energy-efficient efficient aeroponic cultivation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.