The formation of adventitious roots (ARs) is an important process for lotus (Nelumbo nucifera), which does not have a well-formed main root. In lotus, the removal of leaves above the waterline significantly promoted AR formation, while the removal of leaves below the waterline inhibited AR formation. Proteins were identified using isobaric tags for relative and absolute quantization technique. The number of proteins decreased with increasing sequencing coverage, and most of the identified proteins had fewer than 10 peptides. In the A1/A0 and A2/A1 stages, 661 and 154 proteins showed increased abundance, respectively, and 498 and 111 proteins showed decreased abundance, respectively. In the B1/B0 and B2/B1 stages, 498 and 436 proteins showed increased abundance, respectively, and 358 and 348 proteins showed decreased abundance, respectively. Among the proteins showing large differences in abundance, 17 were identified as being related to AR formation. Proteins involved in the glycolytic pathway and the citrate cycle showed differences in abundance between the two types of leaf removal. The transcriptional levels of nine genes encoding relevant proteins were assessed by quantitative polymerase chain reaction. The results of this study illustrate the changes in metabolism after different types of leaf removal during AR formation in lotus.
Vascular plant one zinc-finger (VOZ) proteins are a plant-specific transcription factor family and play important roles in plant development and stress responses. However, little is known about the VOZ genes in quinoa. In the present study, a genome-wide investigation of the VOZ gene family in quinoa was performed, including gene structures, conserved motifs, phylogeny, and expression profiles. A total of four quinoa VOZ genes distributed on three chromosomes were identified. Based on phylogenetic analysis, CqVOZ1 and CqVOZ3 belong to subfamily II, and CqVOZ2 and CqVOZ4 belong to subfamily III. Furthermore, the VOZ transcription factors of quinoa and sugarbeet were more closely related than other species. Except for CqVOZ3, all the other three CqVOZs have four exons and four introns. Analysis of conserved motifs indicated that each CqVOZ member contained seven common motifs. Multiple sequence alignment showed that the CqVOZ genes were highly conserved with consensus sequences, which might be plausibly significant for the preservation of structural integrity of the family proteins. Tissue expression analysis revealed that four CqVOZ genes were highly expressed in inflorescence and relatively low in leaves and stems, suggesting that these genes had obvious tissue expression specificity. The expression profiles of the quinoa CqVOZs under various abiotic stresses demonstrated that these genes were differentially induced by cold stress, salt stress, and drought stress. The transcript level of CqVOZ1 and CqVOZ4 were down-regulated by salt stress and drought stress, while CqVOZ2 and CqVOZ3 were up-regulated by cold, salt, and drought stress, which could be used as abiotic stress resistance candidate genes. This study systematically identifies the CqVOZ genes at the genome-wide level, contributing to a better understanding of the quinoa VOZ transcription factor family and laying a foundation for further exploring the molecular mechanism of development and stress resistance of quinoa.
Adventitious roots (ARs) of lotus (Nelumbonucifera Gaertn.) play a critical role in water and nutrient uptake. We found that exogenously applied 10-μM indole-3-acetic acid (IAA) promoted the formation of ARs, while 150-μM IAA significantly inhibited the emergence of ARs. However, little is known about these different responses to various concentrations of IAA at the molecular level. This study, therefore, examined the gene expression profiling in four libraries treated with 10- and 150-μM IAA based on the high-throughout tag sequencing technique. Approximately 2.4×107 clean tags were obtained after the removal of low-quality tags from each library respectively, among which about 10% clean tags were unambiguous tag-mapped genes to the reference genes. We found that some genes involved in auxin metabolism showed a similar tendency for expression in the A/CK and C/CK libraries, while three genes were enhanced their expression only in the A/CK libraries. Two transcription factors including B3 domain-containing protein At2g36080-like and trihelix transcription factor were up-regulated for transcriptional level in the A/C libraries. The expressions of six important genes related to AR formation were significantly different in the A/CK and C/CK libraries. In summary, this study provides a comprehensive understanding of gene expression regulated by IAA involved in AR formation in lotus.
Adventitious roots (ARs) directly affect lotus seedling growth and product quality because principal root is not well developed. However, the details of AR formation at the molecular level have not been determined in lotus. Therefore, three stages were chosen to identify the change of proteins abundant during rhizome formation, using isobaric tags for relative and absolute quantization coupled with liquid chromatography-tandem mass spectrometry to gain insight into the molecular mechanisms involved in AR formation. We totally obtained 323,375 spectra during AR formation. After filtering to eliminate low-scoring spectra, 66,943 spectra, including 53,106 unique spectra, were identified. These unique spectra matched 28,905 peptides, including 24,992 unique peptides, which were assembled into 6686 proteins. In the C0/C1 and C1/C2 stages, 66 and 32 proteins showed enhanced abundance, and 173 and 73 proteins showed decreased abundance, respectively. Seventeen important AR formation-related proteins from the three stages were identified, and the expressions of nine genes from the above-identified proteins were assessed by qRT-PCR. This article provides a comprehensive understanding of the changes in metabolism during AR formation, and is helpful to accelerate the progress of breeding in fulture in lotus root.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.