Currently, many studies on the severity of traffic conflicts only considered the possibility of potential collisions but ignored the consequences severity of potential collisions. Aiming toward this defect, this study establishes a potential collision (serious conflict) consequences severity model on the basis of vehicle collision theory. Regional vehicles trajectory data and historical traffic accident data were obtained. The field data were brought into the conflict consequences severity model to calculate the conflict severity rate of each section under different TTC thresholds. For comparison, the traditional conflict rate of each section under different TTC thresholds that considered only the number of conflicts was also calculated. Results showed that the relationship between conflict severity rate and influencing factors was somehow different. The conflict severity rate seemed to have a higher correlation with accident rate and accident severity rate than conflict rate did. The TTC threshold value also affected the correlation between conflicts and accidents, with high and low TTC threshold indicating a lower correlation. The results showed that conflict severity rate that considered each single conflict consequence severity was a little better than the traditional conflict rate that considered only the numbers of conflicts in reflecting real risks as a new conflict evaluation indicator. The severity of traffic conflicts should consider two dimensions: the possibility and consequence of potential collisions. Based on this, we propose a new traffic safety evaluation method that takes into account the severity of the consequences of the conflict. More data and prediction models are needed to conduct more realistic and complex research in the future to ensure reliability of this new method.
Currently, several traffic conflict indicators are used as surrogate safety measures. Each indicator has its own advantages, limitations, and suitability. There are only a few studies focusing on fixed object conflicts of highway safety estimation using traffic conflict technique. This study investigated which conflict indicator was more suitable for traffic safety estimation based on conflict-accident Pearson correlation analysis. First, a high-altitude unmanned aerial vehicle was used to collect multiple continuous high-precision videos of the Jinan-Qingdao highway. The vehicle trajectory data outputted from recognition of the videos were used to acquire conflict data following the procedure for each conflict indicator. Then, an improved indicator Ti was proposed based on the advantages and limitations of the conventional indicators. This indicator contained definitions and calculation for three types of traffic conflicts (rear-end, lane change and with fixed object). Then the conflict-accident correlation analysis of TTC (Time to Collision)/PET (Post Encroachment Time)/DRAC (Deceleration Rate to Avoid Crash)/Ti indicators were carried out. The results show that the average value of the correlation coefficient for each indicator with different thresholds are 0.670 for TTC, 0.669 for PET, and 0.710 for DRAC, and 0.771 for Ti, which Ti indicator is obviously higher than the other three conventional indicators. The findings of this study suggest TTC often fails to identify lane change conflicts, PET indicator easily misjudges some rear-end conflict when the speed of the following vehicle is slower than the leading vehicle, and PET is less informative than other indicators. At the same time, these conventional indicators do not consider the vehicle-fixed objects conflicts. The improved Ti can overcome these shortcomings; thus, Ti has the highest correlation. More data are needed to verify and support the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.