Nowadays modern computer GPU (Graphic Processing Unit) became widely used to improve the performance of a computer, which is basically for the GPU graphics calculations, are now used not only for the purposes of calculating the graphics but also for other application. In addition, Graphics Processing Unit (GPU) has high computation and low price. This device can be treat as an array of SIMD processor using CUDA software. This paper talks about GPU application, CUDA memory and efficient CUDA memory using Reduction kernel. High-performance GPU application requires reuse of data inside the streaming multiprocessor (SM). The reason is that onboard global memory is simply not fast enough to meet the needs of all the streaming multiprocessor on the GPU. In addition, CUDA exposes the memory space within the SM and provides configurable caches to give the developer the greatest opportunity of data reuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.