Abstract:In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river) and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT) as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw) are for ECsw, during the model calibration and validation periods, respectively). The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I) Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20-60 cm layer; (II) root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III) root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV) arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V) preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation are key factors to sustainable development of arid wetlands.
This paper presents results from a numerical study performed to examine cone penetration response that spans fully undrained to fully drained conditions. Coupled-consolidation finite-element analyses, which accounted for large deformation and finite sliding effects, were carried out using Abaqus/Standard v6.6 at various rates of cone penetration. The model assumed a smooth soil/cone interface, with the soil idealised as a homogeneous elastic-perfectly plastic material obeying a non-dilatant Drucker–Prager yield criterion. The results for the limiting undrained and drained conditions are compared with published strain path and cone factor solutions. The significant advance of this work is the establishment of the theoretical backbone curves arising from the effects of partial consolidation during cone penetration. The factors affecting the backbone curves are examined, and a simplified procedure for deriving these curves is proposed using a hyperbolic fit. An example is then presented to illustrate how the data from measured field cone tests performed at different penetration rates may be used to estimate the strength, deformation and consolidation characteristics of a soil.
In deep excavation construction, improved soil layers consisting of overlapping cement-admixed columns formed by deep mixing method or jet grouting are often used to stabilise an excavation in soft soils. The purpose of such soil layers is to resist lateral compression generated by movement of the retaining wall. Cement-admixed soils are well known to have high heterogeneity in strength. In this paper, the heterogeneity in strength and Young's modulus are studied using random finite-element analyses, considering three sources of variation: namely, a deterministic radial trend in strength and Young's modulus; a stochastic fluctuation component due to non-uniform mixing; and positioning errors arising from off-verticality of the mixing shafts. The results show that positioning errors have the largest effect on the strength of the slab as a whole, whereas the radial trend has the smallest effect, when normalised by the volume-average strength. Based on the results obtained, methods are proposed which allow equivalent homogeneous mass strength and modulus of the improved slab to be determined for a chosen percentile of exceedance or reliability index, which can be used in deterministic finite-element analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.