Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency (< 2% variation) and spatial uniformity (< 3.4% variation), without substrate pre-treatment. Due to rapid ink drying (< 10 s at < 60 °C), printing causes minimal oxidation. Following encapsulation, the printed black phosphorus is stable against long-term (> 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices.
Abstract. Exposure of mammalian cells to UV irradiation induces rapid and transient expression of early growth response-1 gene (Egr-1) encoding a transcription factor that plays a role in cell survival. These signals from the irradiated cell surface fire likely to involve more than one pathway, and we show here that an essential pathway involves activation of several growth factor receptors by reactive oxygen intermediates (ROI). UVC irradiation causes the tyrosine phosphorylation of EGF receptor (EGFR) in mouse NIH 3T3 fibroblasts and HC11 mouse mammary cells. EGFR activation by irradiation of cells is abrogated by suramin, by antioxidants, and by the presence of a dominant negative EGFR. UV induces the formation of complexes between activated EGFR and SOS, Grb2, PLC% and SHC that can be precipitated with antibodies to EGFR. The activation of EGFR by UV is mimicked by H202, suggesting that ROI may function upstream of EGFR activation. Our observations support the hypothesis that ROI and growth factor receptors operate in the early steps of the UV signal that lead to the enhanced expression and activity of Egr-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.