Dynamic plastic deformation (DPD) achieved by multipass hammer forging is one of the most important metal forming operations to create the excellent materials properties. By using the integrated approaches of optical microscope and scanning electron microscope, the forging temperature effects on the multipass hammer forging process and the forged properties of Ti-6Al-4V alloy were evaluated and the forging samples were controlled with a total height reduction of 50% by multipass strikes from 925°C to 1025°C. The results indicate that the forging temperature has a significant effect on morphology and the volume fraction of primary α phase, and the microstructural homogeneity is enhanced after multipass hammer forging. The alloy slip possibility and strain rates could be improved by multipass strikes, but the marginal efficiency decreases with the increased forging temperature. Besides, a forging process with an initial forging temperature a bit above β transformation and finishing the forging a little below the β transformation is suggested to balance the forging deformation resistance and forged mechanical properties.
The interaction between the slipstream of the propellers and the wing of an aircraft with distributed electric propulsion (DEP) could benefit aerodynamics. A conceptual design and optimization are carried out in order to increase the range of an electric general aviation aircraft without affecting its takeoff and landing velocity in the same fuselage condition. Propellers are modelled using the actuator disk (AD) theory, and the aircraft is modelled using the vortex lattice method (VLM) to obtain DEP aircraft’s aerodynamics in conceptual design. The DIRECT method is used for global optimization. To concentrate on the layout of the propellers and wing, a propeller with the same chord distribution, twist distribution, and number of blades is selected. The design and optimization of DEP aircraft’s range is carried out with the objective of achieving the maximum product of the lift–drag ratio with propeller efficiency under force balance constrains. Additionally, to decrease the takeoff and landing distance, the DEP aircraft’s takeoff and landing performance are optimized with the objective of the smallest velocity at an angle near the tail down angle under the constrains of acceleration bigger than 0 and a Mach number at the tip of blades smaller than 0.7. The CFD simulation was used to confirm the DEP aircraft’s pretty accurate aerodynamics. Compared to the reference aircraft, the improved DEP aircraft with 10 high-lift propellers on the leading edge of the wing and 2 wing-tip propellers may boost cruise performance by 6% while maintaining takeoff and landing velocity. Furthermore, it has been shown that the stall speed of DEP aircraft with smaller wings would rise proportionally when compared to conventional design aircraft, and the power need of DEP aircraft will be increased as a result of the operation of high-lift propellers. The conceptual design and optimal approach suggested in this work has some reference value for the design and research of the fixed-wing DEP general aviation aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.