The aim of this study was to analyze the prevalence of mild cognitive impairment (MCI) among the aging population (60 years of age and above) in China. Epidemiological investigations on MCI in online Chinese journals were identified manually using the CQVIP, CNKI, and Wanfang databases. Articles from journals published in English were identified using PubMed and Web of Science. Original studies that included prevalence surveys of MCI were selected. Forty-eight relevant studies were included in the analysis, covering 22 provinces in China. Our results showed that the pooled prevalence of MCI in the older Chinese population was 14.71% (95% confidence interval [CI], 14.50-14.92%). The prevalence was 16.72% (95% CI, 15.68-17.71%) in clinical samples vs. 14.61% (95% CI, 14.40-14.83%) in nonclinical samples (χ2=16.60, P<0.01), and 15.20% (95% CI, 14.91-15.49%) in screened samples vs. 14.16% (95% CI, 13.85-14.46%) in diagnosed samples (χ2=22.11, P<0.01). People of older age, of female sex, or living in rural areas or western China were associated with a higher prevalence of MCI. The prevalence of MCI was high in Chinese older adults, and even higher in those who were older, female, or living in rural areas or western China. Future studies are recommended to address the prevalence of MCI in the other 12 provinces of China. Furthermore, diagnostic assessments should be included in the identification of MCI.
Adenosine receptors (ADORs) in the enteric nervous system may be of importance in the control of motor and secretomotor functions. Gene expression and distribution of neural adenosine A1, A2a, A2b, or A3 receptors (Rs) in the human intestine was investigated using immunochemical, Western blotting, RT-PCR, and short-circuit current (I(sc)) studies. Adenosine A1R, A2aR, A2bR, or A3R mRNAs were differentially expressed in neural and nonneural layers of the jejunum, ileum, colon, and cecum and in HT-29, T-84, T98G, and Bon cell lines. A1R, A2aR, A2bR, and A3R immunoreactivities (IRs) were differentially expressed in PGP 9.5-immunoreactive neurons. A2bR IR occurs exclusively in 50% of submucosal vasoactive intestinal peptide (VIP) neurons (interneurons, secretomotor or motor neurons) in jejunum, but not colon; A2aR is also found in other neurons. A3R IR occurs in 57% of substance P-positive jejunal submucosal neurons (putative intrinsic primary afferent neurons) and less than 10% of VIP neurons. Western blots revealed bands for A3R at 44 kDa, 52 kDa, and 66 kDa. A2aR and A2bR are coexpressed in enteric neurons and epithelial cells. 5'-N-methylcarboxamidoadenosine or carbachol evoked an increase in I(sc). A2bR IR is more prominent than A2aR IR in myenteric neurons, nerve fibers, or glia. A1R is expressed in jejunal myenteric neurons and colonic submucosal neurons. Regional differences also exist in smooth muscle expression of ADOR IR(s). It is concluded that neural and nonneural A1, A2a, A2b, and A3Rs may participate in the regulation of neural reflexes in the human gut. Clear cell and regional differences exist in ADOR gene expression, distribution, localization, and coexpression.
Mechanical activation of the mucosal lining of the colon by brush stroking elicits an intestinal neural reflex and an increase in short circuit current (Isc) indicative of electrogenic chloride ion transport. We tested whether endogenous nucleotides are physiologic regulators of mucosal reflexes that control ion transport. The brush stroking-evoked Isc response in mucosa and submucosa preparations (M-SMP) of rat colon was reduced by the P2Y1 receptor (R) antagonist 2'deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179) and further blocked by tetrodotoxin (TTX). M-SMP Isc responses to serosal application of the P2Y1 R agonist 2-methylthioadenosine-diphosphate (2MeSADP) or the P2Y2/P2Y4 R agonist 5'uridine-triphosphate (UTP) were reduced but not abolished by TTX. The potency profile of nucleotides for increasing Isc was 5'adenosine-triphosphate (ATP; effective concentration at half maximal response [EC50] 0.65 x 10(4) M) congruent with UTP (EC50 1.0 x 10(-4) M) congruent with 2MeSADP (EC50 = 1.60 x 10(-4) M). Mucosal touch and distention-induced Ca2+ transients in submucous neurons were reduced by apyrase and prevented by blocking the P2Y1 R with MRS 2179 and TTX; denervation of the mucosa. It did not occur by touching a ganglion directly. 2MeSADP Ca2+ responses occurred in subsets of neurons with or without substance P (SP) responses. The potency profile of nucleotides on the neural Ca2+ response was 2MeSADP (5 x 10(-7) M) > UTP (6 x 10(-6) M) > ATP (9 x 10(-5) M). The expression of P2Y R immunoreactivity (ir) in nerve cell bodies was in the order of P2Y1 R > P2Y4 R >> P2Y2 R. P2Y1R ir occurred in the cell somas of more than 90% of neuronal nitric oxide synthase, vasoactive intestinal peptide (VIP), calretinin, or neuropeptide Y (NPY)-ir neurons, 78% of somatostatin neurons, but not in calbindin or SP neurons. P2Y2 R ir was expressed in a minority of SP, VIP, NPY, vesicular acetylcholine transporter, and calcitonin gene-related peptide-ir varicose fibers (5-20%) and those surrounding calbindin (5-20%) neurons. P2Y4 ir occurred mainly in the cell somas of 93% of NPY neurons. Reverse transcriptase polymerase chain reaction of the submucosa demonstrated mRNA for P2Y1R, P2Y2, P2Y4, P2Y6, and P2Y12 Rs. Expression of P2Y1, P2Y2, and P2Y4 protein was confirmed by western blots. In conclusion, endogenous nucleotides acting at P2YRs transduce mechanically evoked reflex chloride ion transport in rat distal colon. Nucleotides evoke reflexes by acting primarily at postsynaptic P2Y1 Rs and P2Y4 R on VIP+/NPY+ secretomotor neurons, at P2Y2 Rs on no more than 2% of VIP+ secretomotor neurons, and 2Y2 Rs mainly of extrinsic varicose fibers surrounding putative intrinsic primary afferent and secretomotor neurons. During mucosal mechanical reflexes, it is postulated that P2Y1 R, P2Y2 R, and P2Y4 R are activated by endogenous ATP, UTP, and 5'uridine-diphosphate.
Chloride secretion is important because it is the driving force for fluid movement into the intestianl lumen. Flow of accummulated fluid flushes out invading micro-orgnaisms in defense of the host. Chloride secretion is regulated by neurons in the submucosal plexus of the enteric nervous system. Mechanosensitive enterochromaffin cells that release 5-hydroxytryptamine (5-HT)activate intrinsic afferent neurons in the submucosal plexus and initiate chloride secretion. Mechanical stimulation by distention may also triggers reflexes by a direct action on intrinsic afferent neurons. Dysregulation of 5-HT release or altered activity of intrinsic afferents is likely to occur in states of inflammation and other disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.