An algorithm based on the marginalized particle filters (MPF) is given in details in this paper to solve the spacecraft attitude estimation problem: attitude and gyro bias estimation using the biased gyro and vector observations. In this algorithm, by marginalizing out the state appearing linearly in the spacecraft model, the Kalman filter is associated with each particle in order to reduce the size of the state space and computational burden. The distribution of attitude vector is approximated by a set of particles and estimated using particle filter, while the estimation of gyro bias is obtained for each one of the attitude particles by applying the Kalman filter. The efficiency of this modified MPF estimator is verified through numerical simulation of a fully actuated rigid body. For comparison, unscented Kalman filter (UKF) is also used to gauge the performance of MPF. The results presented in this paper clearly demonstrate that the MPF is superior to UKF in coping with the nonlinear model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.