Probabilistic conflict detection methods typically require high computational burden to deal with complex multiaircraft conflict detection. In this article, aircraft conflict detection is considered as a binary classification problem; therefore, it can be solved by a pattern recognition method. A potential conflict would be identified, as long as its flight data features are extracted and fed to a classifier which has been trained by a large number of flight datasets. Based on this, a new method based on support vector machine (SVM) is employed to detect multiaircraft conflict in “Free Flight” airspace and to estimate the conflict probability. For that purpose, the current positions, velocity vectors, and predicted look-ahead time are selected as detection factors, and the detection model is established by SVM to detect aircraft conflict within look-ahead time during short and medium terms. Moreover, conflict probabilities are determined by the sigmoid function mapping method. Nevertheless, false alarm rate is always a first and foremost problem that troubles air traffic controllers. For the purpose of reducing false alarm rates, Synthetic Minority Over-sampling Technique (SMOTE) method is used to handle imbalanced datasets. Extensive simulation results are presented to illustrate the rationality and accuracy of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.