FTO, the first RNA demethylase discovered, mediates the demethylation of internal N-methyladenosine (mA) and N, 2-O-dimethyladenosine (mA) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal mA and cap mA in mRNA, internal mA in U6 RNA, internal and cap mA in snRNAs, and N-methyladenosine (mA) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal mA than the ones with cap mA in the tested cells. We also show that FTO can directly repress translation by catalyzing mA tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to mA and mA in mRNA and snRNA as well as mA in tRNA.
Graphical AbstractHighlights d Structure-guided design and optimization yield potent FTO inhibitors d mRNA m 6 A acts as the major effector of the inhibitor/FTO axis in AML cells d FTO inhibitor FB23-2 displays therapeutic effects in PDX AML models d Targeting epitranscriptomic RNA methylation holds potential to treat AML SUMMARY FTO, an mRNA N 6 -methyladenosine (m 6 A) demethylase, was reported to promote leukemogenesis. Using structure-based rational design, we have developed two promising FTO inhibitors, namely FB23 and FB23-2, which directly bind to FTO and selectively inhibit FTO's m 6 A demethylase activity. Mimicking FTO depletion, FB23-2 dramatically suppresses proliferation and promotes the differentiation/apoptosis of human acute myeloid leukemia (AML) cell line cells and primary blast AML cells in vitro. Moreover, FB23-2 significantly inhibits the progression of human AML cell lines and primary cells in xeno-transplanted mice. Collectively, our data suggest that FTO is a druggable target and that targeting FTO by small-molecule inhibitors holds potential to treat AML.
SignificanceAs the most abundant internal mRNA modification, m 6 A impacts various biological processes. As a major m 6 A demethylase, FTO is overexpressed in certain subtypes of AMLs and promotes leukemogenesis. Thus, the development of effective inhibitors to target FTO's aberrant m 6 A demethylase activity is urgently needed for leukemia therapy. Here we report two selective FTO inhibitors that efficiently reverse/suppress FTO-mediated aberrant epitranscriptome in AML cells and significantly inhibit AML progression in vivo. Our studies provide the proof-of-concept evidence demonstrating that small-molecule inhibitors targeting oncogenic FTO represent a promising targeted therapeutic strategy for the effective treatment of AML. Moreover, given the overexpression of FTO in various cancers, our work may have a broad impact on cancer therapy by targeting the FTO-mediated epitranscriptome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.