High-density surface electromyography (HD-sEMG) and deep learning technology are becoming increasingly used in gesture recognition. Based on electrode grid data, information can be extracted in the form of images that are generated with instant values of multi-channel sEMG signals. In previous studies, image-based, two-dimensional convolutional neural networks (2D CNNs) have been applied in order to recognize patterns in the electrical activity of muscles from an instantaneous image. However, 2D CNNs with 2D kernels are unable to handle a sequence of images that carry information concerning how the instantaneous image evolves with time. This paper presents a 3D CNN with 3D kernels to capture both spatial and temporal structures from sequential sEMG images and investigates its performance on HD-sEMG-based gesture recognition in comparison to the 2D CNN. Extensive experiments were carried out on two benchmark datasets (i.e., CapgMyo DB-a and CSL-HDEMG). The results show that, where the same network architecture is used, 3D CNN can achieve a better performance than 2D CNN, especially for CSL-HDEMG, which contains the dynamic part of finger movement. For CapgMyo DB-a, the accuracy of 3D CNN was 1% higher than 2D CNN when the recognition window length was equal to 40 ms, and was 1.5% higher when equal to 150 ms. For CSL-HDEMG, the accuracies of 3D CNN were 15.3% and 18.6% higher than 2D CNN when the window length was equal to 40 ms and 150 ms, respectively. Furthermore, 3D CNN achieves a competitive performance in comparison to the baseline methods.
This paper presents a compact circularly polarized microstrip antenna for radio frequency identification (RFID) readers. The dimensions of the proposed antenna are reduced by etching a cross slot in the radiation patch and loading four grounded coupling patches on the four corners of the radiation patch. An inverted Z-shaped coupling feedline is used to realize circularly polarized operation. The measured −10 dB |S 11 | bandwidth, 3-dB axial ratio bandwidth and maximum gain are 872−1095 MHz, 888−933 MHz, and 5.52 dBi, respectively, at 922 MHz frequency. The overall dimension of the proposed antenna is 0.36 λ g × 0.36 λ g × 0.05 λ g (λ g is the guide wavelength at the center frequency of 915 MHz). The proposed antenna has small size with good overall performance and is suitable for compact RFID devices. INDEX TERMS Circular polarization (CP), coupling patch, coupling feedline, microstrip antenna, radio frequency identification.
The surface electromyography (sEMG) signal has been used for volitional control of robotic assistive devices. There are still challenges in improving system performance accuracy and signal processing to remove systematic noise. This study presents procedures and a pilot validation of the EMG-driven speed-control of exoskeleton and integrated treadmill with a goal to provide better interaction between a user and the system. The gait cycle duration (GCD) was extracted from sEMG signals using the autocorrelation algorithm and Bayesian fusion algorithm. GCDs of various walking speeds were then programmed to control the motion speed of exoskeleton robotic system. The performance and efficiency of this sEMG-controlled robotic assistive ambulation system was tested and validated among 6 healthy volunteers. The results demonstrated that the autocorrelation algorithm extracted the GCD from individual muscle contraction. The GCDs of individual muscles had variability between different walking steps under a designated walking speed. Bayesian fusion algorithms processed the GCDs of multiple muscles yielding a final GCD with the least variance. The fused GCD effectively controlled the motion speeds of exoskeleton and treadmill. The higher amplitude of EMG signals with shorter GCD was found during a faster walking speed. The algorithms using fused GCDs and gait stride length yielded trajectory joint motion tracks in a shape of sine curve waveform. The joint angles of the exoskeleton measured by a decoder mounted on the hip turned out to be in sine waveforms. The hip joint motion track of the exoskeleton matched the angles projected by trajectory curve generated by computer algorithms based on the fused GCDs with high agreement. The EMG-driven speed-control provided the human-machine inter-limb coordination mechanisms for an intuitive speed control of the exoskeleton-treadmill system at the user's intents. Potentially the whole system can be used for gait rehabilitation of incomplete spinal cord hemispheric stroke patients as goal-directed and task-oriented training tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.